【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)點A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是( )

A.
B.2
C.3
D.2

【答案】A
【解析】解:∵∠ACB=90°,∠ABC=30°,AC=2,
∴∠A=90°-∠ABC=90°-30°=60°,AB=2AC=4,CB=2
∵△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,
∴A1C=AC,
∴△A1AC是等邊三角形,
∴A1C=AC=A1A=2,
∴∠B1CB=∠ACA1=60°,
∵CB=CB1 ,
∴△CB1B是等邊三角形,
∴B1B=2,BA1=2,∠A1B1B=90°
∵BB1的中點D,
∴BD=DB1=
A1D===
故答案為:A先根據(jù)題意證明△A1AC和△CB1B是等邊三角形,,再證明△A1BD是直角三角形,然后根據(jù)勾股定理求出A1D的長即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解一元二次方程x2+2x﹣3=0時,可轉(zhuǎn)化為解兩個一元一次方程,請寫出其中的一個一元一次方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若∠C50°,∠B-∠A100°,則∠B的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BE.
求證:BD=2CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“成自”高鐵自貢仙市段在建設(shè)時,甲、乙兩個工程隊計劃參與該項工程建設(shè),甲隊單獨施工30天完成該項工程的 ,這時乙隊加入,兩隊還需同時施工30天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過40天,則乙隊至少施工多少天才能完成該項工程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用直尺畫圖(先用鉛筆畫圖,然后再用墨水筆將符合條件的圖形畫出).

(1)利用圖1中的網(wǎng)格,過P點畫直線AB的平行線和垂線;

(2)平移圖(2)網(wǎng)格中的三條線段AB、CD、EF,使平移后三條線段首尾順次相接組成一個三角形;

(3)如果每個方格的邊長是單位1,那么圖(2)中組成的三角形的面積等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計顯示,2013年底杭州市各類高中在校學(xué)生人數(shù)大約是11.4萬人,將11.4萬用科學(xué)記數(shù)法表示應(yīng)為(
A.11.4×102
B.1.14×103
C.1.14×104
D.1.14×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點M.

(1)求拋物線的表達(dá)式;

(2)D為拋物線在第二象限部分上的一點,作DE垂直x軸于點E,交線段AM于點F,求線段DF長度的最大值,并求此時點D的坐標(biāo);

(3)拋物線上是否存在一點P,作PN垂直x軸于點N,使得以點P、A、N為頂點的三角形與△MAO相似(不包括全等)?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各項中,給出的三條線段長不能組成三角形的是(

A.1,11B.1,2,3

C.34,5D.5 6,7

查看答案和解析>>

同步練習(xí)冊答案