如圖,過點O作直線與雙曲線y=(k≠0)交于A、B兩點,過點B作BC⊥x軸于點C,作BD⊥y軸于點D.在x軸上分別取點E、F,使點A、E、F在同一條直線上,且AE=AF.設(shè)圖中矩形ODBC的面積為S1,△EOF的面積為S2,則S1、S2的數(shù)量關(guān)系是(  )

 

A.

S1=S2

B.

2S1=S2

C.

3S1=S2

D.

4S1=S2


B

解:設(shè)A點坐標(biāo)為(m,n),

過點O的直線與雙曲線y=交于A、B兩點,則A、B兩點關(guān)與原點對稱,則B的坐標(biāo)為(﹣m,﹣n);

矩形OCBD中,易得OD=﹣n,OC=m;則S1=﹣mn;

在Rt△EOF中,AE=AF,故A為EF中點,

由中位線的性質(zhì)可得OF=﹣2n,OE=2m;

則S2=OF×OE=﹣4mn;

故2S1=S2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


閱讀下面材料:小騰遇到這樣一個問題:如圖1,在△ABC中,點D在線段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的長.

小騰發(fā)現(xiàn),過點C作CE∥AB,交AD的延長線于點E,通過構(gòu)造△ACE,經(jīng)過推理和計算能夠使問題得到解決(如圖 2).

請回答:∠ACE的度數(shù)為  ,AC的長為   

參考小騰思考問題的方法,解決問題:

如圖 3,在四邊形 ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC與BD交于點E,AE=2,BE=2ED,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點B,C的切線,且∠BDC=110°.連接AC,則∠A的度數(shù)是  °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


布袋中裝有3個紅球和6個白球,它們除顏色外其他都相同,如果從布袋里隨機(jī)摸出一個球,那么所摸到的球恰好為紅球的概率是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當(dāng)△EFC為直角三角形時,BE的長為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是   ;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是   ;

(3)△A2B2C2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


據(jù)統(tǒng)計我國2014年前四月已開工建造286萬套保障房,其中286萬用科學(xué)記數(shù)法表示為( 。

 

A.

2.86×106

B.

2.86×107

C.

28.6×105

D.

0.286×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,點A(2,m)在第一象限,若點A關(guān)于x軸的對稱點B在直線y=﹣x+1上,則m的值為(  )

 

A.

﹣1

B.

1

C.

2

D.

3

查看答案和解析>>

同步練習(xí)冊答案