如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸,y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=數(shù)學(xué)公式(m≠0)的圖象的第一象限交于點(diǎn)C,CD垂直于x軸,垂足為D,若OA=OB=OD=1,求:
(1)求點(diǎn)A、B、D的坐標(biāo):A______,B______,D______;
(2)求一次函數(shù)的解析式:______;
(3)求反比例函數(shù)的解析式:______.

解:(1)點(diǎn)A、B、D的坐標(biāo):A (-1,0),B (0,1),D(1,0);

(2)把A (-1,0),B (0,1),代入y=kx+b得
解得:
所以一次函數(shù)的解析式:y=x+1;

(3)把x=1代入y=x+1得,y=2,即點(diǎn)C的坐標(biāo)是(1,2);
代入反比例函數(shù)y=得,m=2
所以反比例函數(shù)的解析式:y=
故答案為:(1)(-1,0),(0,1),(1,0);(2)y=x+1;(3)y=
分析:(1)由題意可知,(1)點(diǎn)A、B、D的坐標(biāo):A (-1,0),B (0,1),D(1,0);
(2)把A、B兩點(diǎn)代入一次函數(shù)y=kx+b得方程組求k,b的值即可;
(3)點(diǎn)C的橫坐標(biāo)與D的相同,再代入一次函數(shù)中求出縱坐標(biāo),從而代入求其解析式.
點(diǎn)評:本題主要考查了求一次函數(shù)與反比例函數(shù)的解析式,一般利用待定系數(shù)法求出它們的關(guān)系式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
ax
的圖象交于A(2,4)和精英家教網(wǎng)B(-4,m)兩點(diǎn).
(1)求這兩個函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出,當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-
8x
的圖象交于A,B點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.求:
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求一次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點(diǎn).
(1)分別求出y1和y2的解析式;
(2)寫出y1=y2時,x的值;
(3)寫出y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=k1x+b經(jīng)過A、B兩點(diǎn),將點(diǎn)A向上平移1個單位后剛好在反比例函數(shù)y=
k2x
上.
(1)求出一次函數(shù)解析式.
(2)求出反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=
4-2m
x
的圖象交于點(diǎn)A、B,交x軸于點(diǎn)C.
(1)求m的取值范圍;
(2)若點(diǎn)A的坐標(biāo)是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函數(shù)的解析式;
(3)根據(jù)圖象,寫出當(dāng)反比例函數(shù)的值小于一次函數(shù)的值時x 的取值范圍?

查看答案和解析>>

同步練習(xí)冊答案