如圖所示,已知拋物線y = ax2 + bx + c(a≠0)的頂點為 Q(2,- 1),且與y軸交于點 C(0,3),與x軸交于A、B兩點(點A在點B的右側(cè)),連接AC,點P從點C出發(fā)沿拋物線向點A運動(點P與點A不重合),過點P作PD∥y軸,交AC于點 D。
(1)求該拋物線的解析式。
(2)連接OP,設(shè)點P的坐標(biāo)為 (x,y),點P從C 向A運動的過程中,由線段CO、OP、PA、AC 圍成的四邊形的面積為 S,求S關(guān)于P點橫坐標(biāo)x的函數(shù)解析式,并求出S的最大值。
(3)在點P從C向 A運動的過程中,若∠DAP = 90°,直接寫出符合條件的點 P的坐標(biāo)。
解:(1)∵ 拋物線y= ax2 + bx + c(a≠0)的頂點為 (2,-1),
∴ 設(shè)該拋物線的解析式為y= a(x - 2)2 -1,    
∵ 拋物線與y軸交于點 C(0,3),
∴ 3 = a(0-2)2-1,
∴ a =1, 
∴ 該拋物線的解析式為 y = (x -2)2-1,
即 y= x2 - 4x +3。   
( 2 ) 由 x2 - 4x + 3 = 0 ,
得 x1= 1 , x2 = 3,
∵ A在B的右側(cè),
∴A(3,0),B(1,0),    
∴ S△AOC =3×3 ÷2 =,S△AOP =    
∴ 當(dāng)點P從C運動到B時,即0≤x≤1時,
S= S△AOC - S△AOP =
當(dāng)點P從B運動到A時,即 1 <x<3 時,
S= S△AOC + S△AOP
∴ S=     
當(dāng)點P與點 Q重合時,S最大,最大值為 6。   
(3)符合條件的點 P的坐標(biāo)為(2,-1)。       
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標(biāo);
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標(biāo);否則,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知拋物線y=x2-4x+3與x軸交于A,B兩點,C為拋物線的頂點,過點A作AP∥精英家教網(wǎng)BC交拋物線于點P.
(1)求A,B,C三點坐標(biāo);
(2)求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在點M,過點M作ME⊥x軸于點E,使A,M,E三點為頂點的三角形與△PCA相似?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點和點(-2,0),則2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,點B的坐標(biāo)為(3,0),拋物線的對稱軸x=2交x軸于點E.
(1)求交點A的坐標(biāo)及拋物線的函數(shù)關(guān)系式;
(2)在平面直角坐標(biāo)系xOy中是否存在點P,使點P與A,B,C三點構(gòu)成一個平行四邊形?若存在,請直接寫出點P坐標(biāo);若不存在,請說明理由;
(3)連接CB交拋物線對稱軸于點D,在拋物線上是否存在一點Q,使得直線CQ把四邊形DEOC分成面積比為1:7的兩部分?若存在,請求出點Q坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點為坐標(biāo)原點O,矩形ABCD的頂點A,D在拋物線上,且AD平行x軸,交y軸于點F,AB的中點E在x軸上,B點的坐標(biāo)為(2,1),點P(a,b)在拋物線上運動.(點P異于點O)
(1)求此拋物線的解析式.
(2)過點P作CB所在直線的垂線,垂足為點R,
①求證:PF=PR;
②是否存在點P,使得△PFR為等邊三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
③延長PF交拋物線于另一點Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

同步練習(xí)冊答案