在?ABCD中,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E是邊CD的中點(diǎn),且AB=6,BC=10,則OE=   
【答案】分析:先畫(huà)出圖形,根據(jù)平行線的性質(zhì),結(jié)合點(diǎn)E是邊CD的中點(diǎn),可判斷OE是△DBC的中位線,繼而可得出OE的長(zhǎng)度.
解答:解:
∵四邊形ABCD是平行四變形,
∴點(diǎn)O是BD中點(diǎn),
∵點(diǎn)E是邊CD的中點(diǎn),
∴OE是△DBC的中位線,
∴OE=BC=5.
故答案為:5.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì)及中位線定理的知識(shí),解答本題的關(guān)鍵是根據(jù)平行四邊形的性質(zhì)判斷出點(diǎn)O是BD中點(diǎn),得出OE是△DBC的中位線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•沙河口區(qū)一模)如圖,在?ABCD中,點(diǎn)E、F在對(duì)角線BD上,且BE=DF,連接AE、CF.
求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖州)已知:如圖,在?ABCD中,點(diǎn)F在AB的延長(zhǎng)線上,且BF=AB,連接FD,交BC于點(diǎn)E.
(1)說(shuō)明△DCE≌△FBE的理由;
(2)若EC=3,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南)(1)如圖1,在?ABCD中,點(diǎn)E,F(xiàn)分別在AB,CD上,AE=CF.求證:DE=BF.
(2)如圖2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分線,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•安慶一模)如圖,在?ABCD中,點(diǎn)E是邊AB的中點(diǎn),連接DE交對(duì)角線AC于點(diǎn)O,則△AOE與△COD的面積比為
1:4
1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,點(diǎn)M為CD的中點(diǎn),AM與BD相交于點(diǎn)N,那么△DMN與四邊形BCMN的面積的比為:
1
5
1
5

查看答案和解析>>

同步練習(xí)冊(cè)答案