【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.

(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;

(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時點(diǎn)C的坐標(biāo);

(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)

【答案】(1),;(2)點(diǎn)C的坐標(biāo)為;(3)27.

【解析】試題分析:(1)由點(diǎn)A的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長度從而得出點(diǎn)B的坐標(biāo),由點(diǎn)A、B的坐標(biāo)利用待定系數(shù)法即可求出直線AB的解析式;
(2)設(shè)點(diǎn)C的坐標(biāo)為(m,0),令直線ABx軸的交點(diǎn)為D,根據(jù)三角形的面積公式結(jié)合ABC的面積是8,可得出關(guān)于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點(diǎn)C的坐標(biāo);
(3)設(shè)點(diǎn)E的橫坐標(biāo)為1,點(diǎn)F的橫坐標(biāo)為6,點(diǎn)M、N分別對應(yīng)點(diǎn)E、F,根據(jù)反比例函數(shù)解析式以及平移的性質(zhì)找出點(diǎn)E、F、M、N的坐標(biāo),根據(jù)EMFN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據(jù)平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據(jù)平移的性質(zhì)即可得出C1平移至C2處所掃過的面積正好為S.

試題解析:

(1)∵點(diǎn)A(4,3)在反比例函數(shù)y=的圖象上,

a=4×3=12,

∴反比例函數(shù)解析式為y=;

OA==5,OA=OB,點(diǎn)By軸負(fù)半軸上,

∴點(diǎn)B(0,﹣5).

把點(diǎn)A(4,3)、B(0,﹣5)代入y=kx+b中,

得: ,解得:

∴一次函數(shù)的解析式為y=2x﹣5.

(2)設(shè)點(diǎn)C的坐標(biāo)為(m,0),令直線ABx軸的交點(diǎn)為D,如圖1所示.

y=2x﹣5y=0,則x=,

D(,0),

SABC=CD(yA﹣yB)=|m﹣|×[3﹣(﹣5)]=8,

解得:m=m=

故當(dāng)ABC的面積是8時,點(diǎn)C的坐標(biāo)為(,0)或(,0).

(3)設(shè)點(diǎn)E的橫坐標(biāo)為1,點(diǎn)F的橫坐為6,點(diǎn)M、N分別對應(yīng)點(diǎn)E、F,如圖2所示.

y=x=1,則y=12,

E(1,12),;

y=x=4,則y=3,

F(4,3),

EMFN,且EM=FN,

∴四邊形EMNF為平行四邊形,

S=EM(yE﹣yF)=3×(12﹣3)=27.

C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.

故答案為:27.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)C是線段AB上一點(diǎn),在線段AB的同側(cè)作CADCBE,直線BDAE相交于點(diǎn)F,CA=CDCB=CE,∠ACD=BCE

1)如圖①,若∠ACD=600,則∠AFB=___________;若∠ACD=,則∠AFB=___________

2)如圖②,將圖①中的CAD繞點(diǎn)C順時針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),試探究∠AFB的數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為節(jié)約用水,某市居民生活用水按階梯式水價計量,水價分為三個階梯,價格表如下表所示:

某市自來水銷售價格表

類別

月用水量

(立方米)

供水價格

(元/立方米)

污水處理費(fèi)

(元/立方米)

居民生活用水

階梯一

0~18(含18)

1.90

1.00

階梯二

18~25(含25)

2.85

階梯三

25以上

5.70

(注:居民生活用水水價=供水價格+污水處理費(fèi))

(1)當(dāng)居民月用水量在18立方米及以下時,水價是_____元/立方米.

(2)4月份小明家用水量為20立方米,應(yīng)付水費(fèi)為:

18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)

預(yù)計6月份小明家的用水量將達(dá)到30立方米,請計算小明家6月份的水費(fèi).

(3)為了節(jié)省開支,小明家決定每月用水的費(fèi)用不超過家庭收入的1%,已知小明家的平均月收入為7530元,請你為小明家每月用水量提出建議

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)(0,6),ACy軸,且AC=AO,點(diǎn)B,C橫坐標(biāo)相同,點(diǎn)D在AC上,tan∠AOD=,若反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B、D.

(1)求:k及點(diǎn)B坐標(biāo);

(2)將AOD沿著OD折疊,設(shè)頂點(diǎn)A的對稱點(diǎn)A1的坐標(biāo)是A1(m,n),求:代數(shù)式m+3n的值以及點(diǎn)A1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三邊AB、BC、CA長分別為30、4050.其三條角平分線交于點(diǎn)O,則SABO SBCO SCAO =______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BADBCE均為等腰直角三角形,∠BAD =BCE = 90°,點(diǎn)MAN的中點(diǎn),過點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

1)當(dāng)A,BC三點(diǎn)在同一直線上時(如圖1),求證:AD=NE ;

2)將圖1中的BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)AB,E三點(diǎn)在同一直線上時(如圖2),求證:ACN為等腰直角三角形;

3)將圖1BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時,(2)中的結(jié)論是否仍成立?若成立,請證明;若不成立,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,PB⊙O的切線,B為切點(diǎn)圓心OPC,∠P=30°,D為弧BC的中點(diǎn).

(1)求證:PB=BC;

(2)試判斷四邊形BOCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠(yuǎn)處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:噢,我知道路燈有多高了!同學(xué)們,請你和小明一起解答這個問題:

(1)在圖中作出路燈O的位置,并作OP⊥lP.

(2)求出路燈O的高度,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“最”、“”、“”、“東”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

(1)若從中任取一個球,球上的漢字剛好是“丹”的概率為

(2)甲從中任取一球,記下漢字后再放回袋中,然后再從中任取一球,請用樹狀圖或列表格的方法,求出甲取出的兩個球上的漢字恰能組成“最美”或“丹東”的概率為P1;

(3)乙從中任取一球,不放回,再從中任取一球,記乙取出的兩個球上的漢字恰能組成“最美”或“丹東”的概率P2,指出P1P2的大小關(guān)系 (請直接寫出結(jié)論).

查看答案和解析>>

同步練習(xí)冊答案