【題目】如圖,AB為半圓的直徑,C是半圓弧上一點,正方形DEFG的一邊DG在直徑AB上,另一邊DE過△ABC的內(nèi)切圓圓心O,且點E在半圓弧上.若正方形DEFG的面積為100,且△ABC的內(nèi)切圓半徑r=4,則半圓的直徑AB=____

【答案】21

【解析】

連接EB、AE,OJ、OI,可得OHCI是正方形,且邊長是4,可設(shè)BD=x,AD=y,則BD=BH=x,AD=AI=y,分別利用直角三角形ABC和直角三角形AEB中的勾股定理和相似比作為相等關(guān)系列方程組求解即可求得半圓的直徑AB=21.

∵正方形DEFG的面積為100,

∴正方形DEFG邊長為10.

連接EB、AE,OI、OJ,

AC、BC是⊙O的切線,

CJ=CI,OJC=OIC=90°,

∵∠ACB=90°,

∴四邊形OICJ是正方形,且邊長是4,

設(shè)BD=x,AD=y,則BD=BI=x,AD=AJ=y,

RtABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2;

RtAEB中,

∵∠AEB=90°,EDAB,

∴△ADE∽△BDE∽△ABE,

ED2=ADBD,即102=xy

解①②得x+y=21,即半圓的直徑AB=21.

故答案為:21.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】韋達定理:若一元二次方程ax2+bx+c=0(a≠0)的兩根分別為x1、x2 , x1+x2=﹣ , x1x2=閱讀下面應(yīng)用韋達定理的過程:

若一元二次方程﹣2x2+4x+1=0的兩根分別為x1、x2x12+x22的值.

解:該一元二次方程的△=b2﹣4ac=42﹣4×(﹣2)×1=24>0

由韋達定理可得,x1+x2=﹣=﹣=2,x1x2===﹣

x12+x22=(x1+x22﹣2x1x2

=22﹣2×(﹣

=5

然后解答下列問題:

(1)設(shè)一元二次方程2x2+3x﹣1=0的兩根分別為x1,x2, 不解方程,求x12+x22的值;

(2)若關(guān)于x的一元二次方程(k﹣1)x2+(k2﹣1)x+(k﹣1)2=0的兩根分別為α,β,且α22=4,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DBCB的延長線于G.

(1)求證:△CDB≌△BAG.

(2)如果四邊形BFDE是菱形,那么四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+bk≠0)與反比例函數(shù)ym≠0)的圖象交于點A3,1),且過點B0,﹣2).

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)如果點Px軸上的一點,且ABP的面積是3,求點P的坐標;

3)若P是坐標軸上一點,且滿足PAOA,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機會大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列幾何體是由4個相同的小正方體搭成的,其中主視圖和左視圖相同的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于A1a)、B兩點.

1)求反比例函數(shù)的表達式及點B的坐標;

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題10分)如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線,交AB于點E,交CA的延長線于點F.

(1)求證:FE⊥AB;

(2)當(dāng)EF=6,=時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行節(jié)能減排,低碳經(jīng)濟政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求,若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范國,每套產(chǎn)品的售價不低于90萬元,生產(chǎn)總成本不高于1250萬元,已知這種設(shè)備的月產(chǎn)量x(套)與每套產(chǎn)品的售價y1(萬元)之間滿足關(guān)系式y1=130﹣x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.

(1)求出y2x之間的函數(shù)關(guān)系式,并求月產(chǎn)量x的范圍;

(2)當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案