精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線y軸交于點,與x軸交于點,點P是線段AB上方拋物線上的一個動點.

求這條拋物線的表達式及其頂點坐標;

當點P移動到拋物線的什么位置時,使得,求出此時點P的坐標;

當點PA點出發(fā)沿線段AB上方的拋物線向終點B移動,在移動中,點P的橫坐標以每秒1個單位長度的速度變動;與此同時點M以每秒1個單位長度的速度沿AO向終點O移動,點PM移動到各自終點時停止當兩個動點移動t秒時,求四邊形PAMB的面積S關于t的函數表達式,并求t為何值時,S有最大值,最大值是多少?

【答案】(1)拋物線的表達式為,拋物線的頂點坐標為;(2)P點坐標為;(3)當時,S有最大值,最大值為24.

【解析】分析:(1)由A、B坐標,利用待定系數法可求得拋物線的表達式,化為頂點式可求得頂點坐標;

(2)過P作PC⊥y軸于點C,由條件可求得∠PAC=60°,可設AC=m,在Rt△PAC中,可表示出PC的長,從而可用m表示出P點坐標,代入拋物線解析式可求得m的值,即可求得P點坐標;

(3)用t可表示出P、M的坐標,過P作PE⊥x軸于點E,交AB于點F,則可表示出F的坐標,從而可用t表示出PF的長,從而可表示出△PAB的面積,利用S四邊形PAMB=S△PAB+S△AMB,可得到S關于t的二次函數,利用二次函數的性質可求得其最大值.

詳解:根據題意,把,代入拋物線解析式可得,解得,

拋物線的表達式為,

,

拋物線的頂點坐標為

如圖1,過P軸于點C

,

,

時,,

,即,

,則

,

P點坐標代入拋物線表達式可得,解得,

經檢驗,與點A重合,不合題意,舍去,

所求的P點坐標為;

當兩個動點移動t秒時,則,,

如圖2,作軸于點E,交AB于點F,則,

,

,

APE的距離竽OE,點BPE的距離等于BE,

,且

,

時,S有最大值,最大值為24.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】學校食堂廚房的桌子上整齊地擺放著若干相同規(guī)格的碟子,碟子的個數與碟子的高度的關系如下表:

碟子的個數

碟子的高度(單位:cm

1

2

2

2+1.5

3

2+3

4

2+4.5

1)當桌子上放有x(個)碟子時,請寫出此時碟子的高度(用含x的式子表示);

2)分別從三個方向上看,其三視圖如上圖所示,廚房師傅想把它們整齊疊成一摞,求疊成一摞后的高度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在△ABC中,AB=BC=5AC=6,△ABC沿BC方向向右平移得△DCE,AC對應點分別是D、E.ACBD相交于點O.

1)將射線BDB點順時針旋轉,且與DC,DE分別相交于F,GCHBGDEH,當DF=CF時,求DG的長;

2)如圖2,將直線BD繞點O逆時針旋轉,與線段ADBC分別相交于點Q,P.設OQ=x,四邊形ABPQ的周長為y,求yx之間的函數關系式,并求y的最小值.

3)在(2)中PQ的旋轉過程中,△AOQ是否構成等腰三角形?若能構成等腰三角形,求出此時PQ的長?若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在一條東西向的雙軌鐵路上迎面駛來一快一慢兩列火車,快車長(單位長度)。慢車長(單位長度),設正在行駛途中的某一時刻,如圖,以兩車之間的某點為原點,取向右方向為正方向畫數軸,此時快車在數軸上表示的數是,慢車頭在數軸上表示的數是,若快車個單位長度/秒的速度向右勻速繼續(xù)行駛,同時慢車個單位長度/秒的速度向左勻速繼續(xù)行駛,且互為相反數.

(1)求此時刻快車頭與慢車頭之間相距多少單位長度?

(2)從此時刻開始算起,問再行駛多少秒兩列火車行駛到車頭相距個單位長度?

(3)此時在快車上有一位愛到腦筋的七年級學生乘客,他發(fā)現行駛中有一段時間,他的位置到兩列火車頭的距離和加上到兩列火車尾、的距離和是一個不變的值(即為定值),你認為學生發(fā)現的這一結論是否正確?若正確,求出增定值及所持續(xù)的時間;若不正確,請說明理由.

附加題:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在推進城鄉(xiāng)義務教育均衡發(fā)展工作中,我市某區(qū)政府通過公開招標的方式為轄區(qū)內全部鄉(xiāng)鎮(zhèn)中學采購了某型號的學生用電腦和教師用筆記本電腦,其中,A鄉(xiāng)鎮(zhèn)中學更新學生用電腦110臺和教師用筆記本電腦32臺,共花費30.5萬元;B鄉(xiāng)鎮(zhèn)中學更新學生電腦55臺和教師用筆記本電腦24臺,共花費17.65萬元.

(1)求該型號的學生用電腦和教師用筆記本電腦單價分別是多少萬元?

(2)經統計,全部鄉(xiāng)鎮(zhèn)中學需要購進的教師用筆記本電腦臺數比購進的學生用電腦臺數的90臺,在兩種電腦的總費用不超過預算438萬元的情況下,至多能購進的學生用電腦和教師用筆記本電腦各多少臺?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形的對角線相交于點,點、上,.

1)求證:;

2)若,,求矩形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將正偶數按下表排成列:

第一列

第二列

第三列

第四列

第五列

第一行

2

4

6

8

第二行

16

14

12

10

第三行

18

20

22

24

第四行

32

30

28

26

根據上表排列規(guī)律,則偶數應在第_________列.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,自行車鏈條每節(jié)鏈條的長度為2.5cm ,交叉重疊部分的圓的直徑為0.8cm

1)嘗試: 2節(jié)鏈條總長度是________ , 3節(jié)鏈條總長度是________

2)發(fā)現:用含的代數式表示節(jié)鏈條總長度是________ 要求填寫最簡結果)

3)應用:如果某種型號自行車鏈條總長度為 ,則它是由多少節(jié)這樣的鏈條構成的?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,二次函數y=ax2+bx4a≠0的圖象與x軸交于A2,0、C8,0兩點,與y軸交于點B,其對稱軸與x軸交于點D

1求該二次函數的解析式;

2如圖1,連結BC,在線段BC上是否存在點E,使得CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標;若不存在,請說明理由;

3如圖2,若點Pm,n是該二次函數圖象上的一個動點其中m0,n0,連結PB,PD,BD,求BDP面積的最大值及此時點P的坐標.

查看答案和解析>>

同步練習冊答案