【題目】【發(fā)現(xiàn)證明】如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過(guò)證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
(1)【類(lèi)比引申】如圖2,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊CB,CD的延長(zhǎng)線(xiàn)上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫(xiě)出EF,BE,DF之間的數(shù)量關(guān)系,并證明;
(2)【聯(lián)想拓展】如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長(zhǎng).
【答案】
(1)解:DF=EF+BE.
理由:如圖1所示, ∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,
∵∠ADC=∠ABE=90°,
∴點(diǎn)C、D、G在一條直線(xiàn)上,
∴EB=DG,AE=AG,∠EAB=∠GAD,
∵∠BAG+∠GAD=90°,
∴∠EAG=∠BAD=90°,
∵∠EAF=45°,
∴∠FAG=∠EAG﹣∠EAF=90°﹣45°=45°,
∴∠EAF=∠GAF,
在△EAF和△GAF中,
,
∴△EAF≌△GAF,
∴EF=FG,
∵FD=FG+DG,
∴DF=EF+BE
(2)解:∵∠BAC=90°,AB=AC,
∴將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ACG,連接FG,如圖2,
∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,
∴FG2=FC2+CG2=BE2+FC2;
又∵∠EAF=45°,
而∠EAG=90°,
∴∠GAF=90°﹣45°,
在△AGF與△AEF中,
,
∴△AEF≌△AGF,
∴EF=FG,
∴CF2=EF2﹣BE2=52﹣32=16,
∴CF=4.
【解析】(1)首先把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG,然后再證明△AFE≌△AFG,依據(jù)全等三角形對(duì)應(yīng)邊相等可得到EF=FG,接下來(lái),由FD=FG+DG可得到DF=EF+BE;
(2)首先將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得△ACG,連接FG,然后依據(jù)旋轉(zhuǎn)的性質(zhì)可得到AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,接下來(lái),再依據(jù)勾股定理可證明FG2=FC2+CG2=BE2+FC2,然后根據(jù)全等三角形的性質(zhì)得到FG=EF,最后,再利用勾股定理可求得CF的長(zhǎng).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圖形的旋轉(zhuǎn)的相關(guān)知識(shí),掌握每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度,任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)P(2x+6,x-4)在平面直角坐標(biāo)系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,∠C=30°點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0),過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)DF= ;(用含t的代數(shù)式表示)
(2)求證:△AED≌△FDE;
(3)當(dāng)t為何值時(shí),△DEF是等邊三角形?說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△DEF為直角三角形?(請(qǐng)直接寫(xiě)出t的值.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校獎(jiǎng)勵(lì)給王偉和李麗上海世博園門(mén)票共兩張,其中一張為指定日門(mén)票,另一張為普通日門(mén)票.班長(zhǎng)由王偉和李麗分別轉(zhuǎn)動(dòng)下圖的甲、乙兩個(gè)轉(zhuǎn)盤(pán)(轉(zhuǎn)盤(pán)甲被二等分、轉(zhuǎn)盤(pán)乙被三等分)確定指定日門(mén)票的歸屬,在兩個(gè)轉(zhuǎn)盤(pán)都停止轉(zhuǎn)動(dòng)后,若指針?biāo)傅膬蓚(gè)數(shù)字之和為偶數(shù),則王偉獲得指定日門(mén)票;若指針?biāo)傅膬蓚(gè)數(shù)字之和為奇數(shù),則李麗獲得指定日門(mén)票;若指針指向分隔線(xiàn),則重新轉(zhuǎn)動(dòng).你認(rèn)為這個(gè)方法公平嗎?請(qǐng)畫(huà)樹(shù)狀圖或列表,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=x+x﹣1的圖象如圖所示,下列對(duì)該函數(shù)性質(zhì)的論斷不可能正確的是( )
A.該函數(shù)的圖象是中心對(duì)稱(chēng)圖形
B.當(dāng)x>0時(shí),該函數(shù)在x=1時(shí)取得最小值2
C.在每個(gè)象限內(nèi),y的值隨x值的增大而減小
D.y的值不可能為1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是線(xiàn)段DE上一點(diǎn),∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE.
(1)求證:DE=BD+CE.
(2)如果是如圖2這個(gè)圖形,BD、CE、DE有什么數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn)與直線(xiàn)交于點(diǎn),.小明將一個(gè)含的直角三角板如圖1所示放置,使頂點(diǎn)落在直線(xiàn)上,過(guò)點(diǎn)作直線(xiàn)交直線(xiàn)于點(diǎn)(點(diǎn)在左側(cè)).
(1)若,,則__________.
(2)若的角平分線(xiàn)交直線(xiàn)于點(diǎn),如圖2.
①當(dāng),時(shí),求證:.
②小明將三角板保持并向左平移,運(yùn)動(dòng)過(guò)程中,__________.(用表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中記載了一個(gè)“折竹抵地”問(wèn)題:“今有竹高二丈,末折抵地,去本六尺,問(wèn)折者高幾何?”
譯文:“有一根竹子,原高二丈(1丈=10尺),現(xiàn)被風(fēng)折斷,竹梢觸地面處與竹根的距離為6尺,問(wèn)折斷處離地面的高度為多少尺?”
如圖,我們用點(diǎn)A,B,C分別表示竹梢,竹根和折斷處,設(shè)折斷處離地面的高度BC=x尺,則可列方程為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com