【題目】學校獎勵給王偉和李麗上海世博園門票共兩張,其中一張為指定日門票,另一張為普通日門票.班長由王偉和李麗分別轉動下圖的甲、乙兩個轉盤(轉盤甲被二等分、轉盤乙被三等分)確定指定日門票的歸屬,在兩個轉盤都停止轉動后,若指針所指的兩個數字之和為偶數,則王偉獲得指定日門票;若指針所指的兩個數字之和為奇數,則李麗獲得指定日門票;若指針指向分隔線,則重新轉動.你認為這個方法公平嗎?請畫樹狀圖或列表,并說明理由.
科目:初中數學 來源: 題型:
【題目】如圖 1,在平面直角坐標系中,點 A 為 x 軸負半軸上一點,點 B 為 x 軸正半軸上一點,C(0,﹣2),D(﹣3,﹣2).
(1)AB,CD 的位置關系為 ;△BCD 的面積為 ;S△ACD S△BCD(填兩者之間的數量關系);
(2)如圖 1,若∠1=100°,∠ACB=65°,求∠CAB 的度數;
(3)如圖 2,若∠ADC=∠DAC,∠ACB 的平分線 CE 交 DA 的延長線于點 E,在 B 點的運動過程中的值是否變化?若不變,直接寫出其值;若變化,請說明理由.(注:三角形內角和等于 180°)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一天,媽媽下班后從公司開車回家,途中想起忘了帶第二天早上開早會的一個文件夾,于是打電話讓辦公室王阿姨馬上從公司送來,同時媽媽也往回開,遇到王阿姨后停下說了幾句話,接著繼續(xù)開車回家.設媽媽從公司出發(fā)后所用時間為t,媽媽與家的距離為s.下面能反映s與t的函數關系的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△DAC和△EBC均是等邊三角形,AE、BD分別與CD、CE交于點M、N,且A、C、B在同一直線上,有如下結論:①△ACE≌△DCB;②CM=CN;③AC=DN;④PC平分∠APB;⑤∠APD=60°,其中正確結論有( )
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【發(fā)現證明】如圖1,點E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數量關系.
小聰把△ABE繞點A逆時針旋轉90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現并證明了EF=BE+FD.
(1)【類比引申】如圖2,點E,F分別在正方形ABCD的邊CB,CD的延長線上,∠EAF=45°,連接EF,請根據小聰的發(fā)現給你的啟示寫出EF,BE,DF之間的數量關系,并證明;
(2)【聯想拓展】如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分10分)如圖,將□ABCD沿過點A的直線折疊,使點D落到AB邊上的點處,折痕交CD邊于點E,連接BE
(1)求證:四邊形是平行四邊形
(2)若BE平分∠ABC,求證:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=4,BC=7,點P是BC邊上與點B不重合的動點,過點P的直線交CD的延長線于點R,交AD于點Q(點Q與點D不重合),且∠RPC=45°.設BP=x,梯形ABPQ的面積為y,求y與x之間的函數關系式,并求出自變量x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com