【題目】如圖①,有兩個(gè)△ABC和△A′B′C′,其中∠C+∠C′=180°,且兩個(gè)三角形不相似.能否分別用一條直線分割這兩個(gè)三角形,使△ABC所分割成的兩個(gè)三角形與△A′B′C′所分割成的兩個(gè)三角形分別相似?如果能,畫出分割線,并標(biāo)明相等的角;如果不能,請說明理由.
小明經(jīng)過思考后,嘗試從特殊情況入手,畫出了當(dāng)∠C=∠C′=90°時(shí)的分割線:
(1)小明在完成畫圖后給出了如下證明思路,請補(bǔ)全他的證明思路.
由畫圖可得△BCD∽△ .
由∠A+∠B=90°,∠A′C′D′+∠B′C′D′=90°,∠A′C′D′=∠B,得 .
同理可得:∠B′=∠ACD.
由此得:△ACD∽△ .
(2)當(dāng)∠C>∠C′時(shí),請?jiān)趫D①的兩個(gè)三角形中分別畫出滿足題意的分割線,并標(biāo)明相等的角.(不寫畫法)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點(diǎn)A(m,3),B(-6,n),與x軸交于點(diǎn)C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點(diǎn)C成中心對稱的△A1B1C1.
(2)將△A1B1C1向右平移4個(gè)單位,作出平移后的△A2B2C2.
(3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫出點(diǎn)P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示.(每個(gè)小方格都是邊長為1個(gè)單位長度的正方形)
(1)畫出△ABC關(guān)于原點(diǎn)對稱的△A'B'C';
(2)將△A'B'C'繞點(diǎn)C'順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A″B″C″,并直接寫出此過程中線段C'A'掃過圖形的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖像經(jīng)過點(diǎn)A(1,0),B(-2,3).
(1)求該二次函數(shù)的表達(dá)式;
(2)求該二次函數(shù)的最大值;
(3)結(jié)合圖像,解答問題:當(dāng)y>3時(shí),x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長;
(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線C1:y=ax2+bx+1的頂點(diǎn)坐標(biāo)為D(1,0)且經(jīng)過點(diǎn)(0,1),將拋物線C1向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線C2,直線y=x+c,經(jīng)過點(diǎn)D交y軸于點(diǎn)A,交拋物線C2于點(diǎn)B,拋物線C2的頂點(diǎn)為P.
(1)求拋物線C1的解析式;
(2)如圖2,連結(jié)AP,過點(diǎn)B作BC⊥AP交AP的延長線于C,設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動點(diǎn),連結(jié)BQ并延長交AC于點(diǎn)F,
①當(dāng)點(diǎn)Q運(yùn)動到什么位置時(shí),S△PBD×S△BCF=8?
②連接PQ并延長交BC于點(diǎn)E,試證明:FC(AC+EC)為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,的對應(yīng)值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根據(jù)上表填空:
①拋物線與x軸的交點(diǎn)坐標(biāo)是_________和_________;
②拋物線經(jīng)過點(diǎn)(-3,_________);
(2)試確定拋物線y=ax2+bx+c的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓的半徑OC=2,線段BC與CD是半圓的兩條弦,BC=CD,延長CD交直徑BA的延長線于點(diǎn)E,若AE=2,則弦BD的長為_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com