【題目】若不等式組 的解集為0<x<1,則a、b的值分別為( )
A.a=2,b=1
B.a=2,b=3
C.a=﹣2,b=3
D.a=﹣2,b=1
科目:初中數學 來源: 題型:
【題目】某銀行去年新增加居民存款10億元人民幣.
(1)經測量,100張面值為100元的新版人民幣大約厚0.9厘米,如果將10億元面值為100元的新版人民幣摞起來,大約有多高?
(2)一臺激光點鈔機的點鈔速度是8×104張/時,按每天點鈔5小時計算,如果讓點鈔機點一遍10億元面值為100元的新版人民幣,點鈔機大約要點多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算題
(1)求值:2 sin45°+(﹣3)2﹣20170×|﹣4|+ ;
(2)先化簡,再求值:( ﹣x﹣1)÷ ,其中x是不等式組 的一個整數解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1、2、3,…是由花盆擺成的圖案,圖1中有1盆花,圖2中有7盆花,圖3中有19盆花,……
根據圖中花盆擺放的規(guī)律,圖4中,應該有__________盆花;第n個圖形中應該有_________盆花。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標中,點O為坐標原點,直線y=﹣x+4與x軸交于點A,過點A的拋物線y=ax2+bx與直線y=﹣x+4交于另一點B,且點B的橫坐標為1.
(1)求a,b的值;
(2)點P是線段AB上一動點(點P不與點A、B重合),過點P作PM//OB交第一象限內的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,過點P作PF⊥MC于點F,設PF的長為t,MN的長為d,求d與t之間的函數關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當S△ACN=S△PMN時,連接ON,點Q在線段BP上,過點Q作QR//MN交ON于點R,連接MQ、BR,當∠MQR﹣∠BRN=45°時,求點R的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.
請解決下列問題:
(1)已知點M,N是線段AB的勾股分割點,且BN>MN>AM.若AM=2,MN=3,求BN的長;
(2)如圖2,若點F、M、N、G分別是AB、AD、AE、AC邊上的中點,點D,E是線段BC的勾股分割點,且EC>DE>BD,求證:點M,N是線段FG的勾股分割點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A,B兩地相距2400米,甲、乙兩人分別從A,B兩地同時出發(fā)相向而行,乙的速度是甲的2倍,已知乙到達A地15分鐘后甲到達B地.
(1)求甲每分鐘走多少米?
(2)兩人出發(fā)多少分鐘后恰好相距480米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O逆時針旋轉至圖2,使一邊OM在∠BOC的內部,且恰好平分∠BOC.問:此時直線ON是否平分∠AOC?請說明理由.
(2)將圖1中的三角板繞點O以每秒6°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為_________(直接寫出結果).
(3)將圖1中的三角板繞點O順時針旋轉至圖3,使ON在∠AOC的內部,請?zhí)骄浚?/span>
∠AOM與∠NOC之間的數量關系,并說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋里裝有紅、黃、綠三種顏色的小球(除顏色不同外其余都相同),其中紅球2個(分別標有1號、2號),黃球1個,從中任意摸出1球是綠球的概率是 .
(1)試求口袋中綠球的個數;
(2)小明和小剛玩摸球游戲:第一次從口袋中任意摸出1球(不放回),第二次再摸出1球.兩人約定游戲勝負規(guī)則如下:摸出“一綠一黃”,則小明贏;摸出“一紅一黃”,則小剛贏.你認為這種游戲勝負規(guī)則公平嗎?請用列表或畫樹狀圖的方法說明理由;若你認為不公平,請修改游戲勝負規(guī)則,使游戲變得公平.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com