【題目】如圖,在矩形中,對角線、交于,,垂足為,,那么的面積是( )
A.B.C.D.
【答案】B
【解析】
過點C作CF⊥BD于F.根據矩形的性質得到∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°.根據全等三角形的性質得到AE=CF.解直角三角形得到OE=,根據三角形的面積公式即可得到結論.
解:如圖:過點C作CF⊥BD于F.
∵矩形ABCD中,BC=2,AE⊥BD,
∴∠ABE=∠CDF=60°,AB=CD,AD=BC=2,∠AEB=∠CFD=90°.
∴△ABE≌△CDF,(AAS),
∴AE=CF.
∵∠ABE=∠CDF=60°,
∴∠ADE=∠CBF=30°,
∴CF=AE=AD=1,
∴BE= =AE=,
∵∠ABE=60°,AO=BO,
∴△ABO是等邊三角形,
∴OE=BE=,
∴S△ECO=OECF=,
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象的對稱軸是直線,則下列理論:①, ②,③,④,⑤當時, 隨的增大而減小,其中正確的是( ).
A. ①②③ B. ②③④ C. ③④⑤ D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=9,BC=12,D是AB邊的中點,P是BC邊上一動點(點P不與B、C重合),若以D、C、P為頂點的三角形與△ABC相似,則線段PC=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,菱形ABCD的頂點A、B在軸上,點A在點B的左側,點D在軸的正半軸上,,點A的坐標為.
(1)求D點的坐標.
(2)求直線AC的函數關系式.
(3)動點P從點A出發(fā),以每秒1個單位長度的速度,按照的順序在菱形的邊上勻速運動一周,設運動時間為秒.求為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數 y=ax2+bx+c(a≠0)的圖象如圖所示,根據圖象解答下列問題:
(1)寫出方程ax2+bx+c=0(a≠0)的實數解;
(2)若方程ax2+bx+c=k有兩個不相等的實數根,寫出 k的取值范圍;
(3)當0<x<3 時,寫出函數值y的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著柴靜紀錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進價比一臺B型空氣凈化器的進價多300元,用7500元購進A型空氣凈化器和用6000元購進B型空氣凈化器的臺數相同.
(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進價各為多少元?
(2)在銷售過程中,A型空氣凈化器因為凈化能力強,噪音小而更受消費者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對B型空氣凈化器進行降價銷售,經市場調查,當B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎上,售價每降低50元,每天將多售出1臺,如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請問商社電器應將B型空氣凈化器的售價定為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【問題提出】如圖1,四邊形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四邊形ABCD的面積.
【嘗試解決】
旋轉是一種重要的圖形變換,當圖形中有一組鄰邊相等時,往往可以通過旋轉解決問題.
(1)如圖2,連接 BD,由于AD=CD,所以可將△DCB繞點D順時針方向旋轉60°,得到△DAB′,則△BDB′的形狀是 .
(2)在(1)的基礎上,求四邊形ABCD的面積.
[類比應用]如圖3,四邊形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=,求四邊形ABCD的面積.
考點:幾何變換綜合題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新定義:對于關于的函數,我們稱函數為函數y的m分函數(其中m為常數).
例如:對于關于x一次函數的分函數為
(1)若點在關于x的一次函數的分函數上,求的值;
(2)寫出反比例函數的分函數的圖象上y隨x的增大而減小的x的取值范圍: ;
(3)若是二次函數關于x的分函數,
①當時,求y的取值范圍;
②當時,,則的取值范圍為 ;
③若點,連結,當關于的二次函數的分函數,與線段MN有兩個交點,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,動點M以每秒1cm的速度從點B向點C移動;同時動點N以3cm的速度從點C向A移動,當點N到達點A時,兩點都停止移動,連接MN,設移動時間為t秒.
(1)當t為何值時,S△MNC=S四邊形ABMN?
(2)當t為何值時,△MNC與△ABC相似?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com