【題目】如圖,已知AD是△ABC的角平分線,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,BD=DG.

下列結(jié)論:(1)DE=DF;(2)∠B=∠DGF; (3)AB<AF+FG;(4)若△ABD和△ADG的面積分別是50和38,則△DFG的面積是8.其中一定正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】B

【解析】

(1)根據(jù)角平分線的性質(zhì)可得出DE=DF,結(jié)論(1)正確;
(2)由DE=DF、BED=GFD、BD=GD可證出BDE≌△GDF(HL),根據(jù)全等三角形的性質(zhì)可得出∠B=DGF,結(jié)論(2)正確;
(3)利用全等三角形的判定定理AAS可證出ADE≌△ADF,由此可得出AE=AF,根據(jù)BDE≌△GDF可得出BE=GF,結(jié)合AB=AE+EB即可得出AB=AF+FG,結(jié)論(3)不正確;
(4)根據(jù)全等三角形的性質(zhì)可得出SADE=SADF、SBDE=SGDF,結(jié)合SABD=SADE+SBDE=50、SADG=SADF-SGDF=38可求出DFG的面積是6,結(jié)論(4)不正確.綜上即可得出結(jié)論.

(1)ADABC的角平分線,DEAB,DFAC,

DE=DF,結(jié)論(1)正確;

(2)BDEGDF,,

BDEGDF(HL),

∴∠B=DGF,結(jié)論(2)正確;

(3)ADEADF,

ADEADF(AAS),

AE=AF.

BDEGDF

BE=GF,

AB=AE+EB=AF+FG,結(jié)論(3)不正確;

(4)ADEADF,BDEGDF

,結(jié)論(4)不正確。

綜上所述:正確的結(jié)論有(1)(2).

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上有點(diǎn)a,b,c三點(diǎn)

(1)用“<”將a,b,c連接起來(lái).

(2)b﹣a   1(填“<”“>”,“=”)

(3)化簡(jiǎn)|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|(zhì)x﹣a|+|x﹣b|的最小值為   

②|x﹣a|+|x﹣b|+|x+1|的最小值為   ;

③|x﹣a|+|x﹣b|+|x﹣c|的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從坡上建筑物AB觀測(cè)坡底建筑物CD.從A點(diǎn)測(cè)得C點(diǎn)的俯角為45°,從B點(diǎn)測(cè)得D點(diǎn)的俯角為30°.已知AB的高度為10m,AB與CD的水平距離是OD=15m,則CD的高度為m(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)、邊上,,,為了判斷的大小關(guān)系,請(qǐng)你填空完成下面的推理過(guò)程,并在空白括號(hào)內(nèi),注明推理的根據(jù).

解:作,垂足為

________三角形,

________

又∵,

________,即________;

又∵________(自己所作),

是線段________的垂直平分線;

________

________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AC與BD是圓的直徑,BE⊥AC,CF⊥BD,垂足分別為E、F
(1)四邊形ABCD是什么特殊的四邊形?請(qǐng)判斷并說(shuō)明理由;
(2)求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表中有兩種移動(dòng)電話計(jì)費(fèi)方式:

月使用費(fèi)

主叫限定時(shí)間(分鐘)

主叫超時(shí)費(fèi)(/分鐘)

被叫

方式一

65

160

0.20

免費(fèi)

方式二

100

380

0.25

免費(fèi)

(月使用費(fèi)固定收;主叫不超過(guò)限定的時(shí)間不再收費(fèi),主叫超過(guò)限定時(shí)間的部分加收超時(shí)費(fèi);被叫免費(fèi))

(1)若張聰某月主叫通話時(shí)間為200分鐘,則他按方式一計(jì)費(fèi)需____,按方式二計(jì)費(fèi)需____

元;李華某月按方式二計(jì)費(fèi)需107,則李華該月主叫通話時(shí)間為_____分鐘;

(2)是否存在某主叫通話時(shí)間(分鐘),按方式一和方式二的計(jì)費(fèi)相等?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由。

(3)直接寫(xiě)出當(dāng)月主叫通話時(shí)間(分鐘)滿足什么條件時(shí),選擇方式一省錢(qián)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一個(gè)長(zhǎng)為4a、寬為b的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后用四塊小長(zhǎng)方形拼成的一個(gè)“回形”正方形(如圖2).

(1)圖2中陰影部分的面積為   ;

(2)觀察圖2,請(qǐng)你寫(xiě)出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是  ;

(3)根據(jù)(2)中的結(jié)論,若x+y=5,xy=4,求x﹣y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)EABC外部,點(diǎn)DBC邊上,DEAC于點(diǎn)F,若∠C=E,∠BAD=CAE,AC=AE

(1)求證:ABC≌△ADE;

(2)若∠B=60°,求證:ABD是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,ACB=90°,CD與CE分別是斜邊AB上的高與中線,以下判斷中正確的個(gè)數(shù)有( 。

①∠DCB=∠A;②∠DCB=∠ACE;③∠ACD=∠BCE;④∠BCE=∠BEC.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案