【題目】甲、乙兩人分別從A、B兩地同時(shí)出發(fā),相向而行,勻速前往B地、A地,兩人相遇時(shí)停留了4min,又各自按原速前往目的地,甲、乙兩人之間的距離y(m)與甲所用時(shí)間x(min) 之間的函數(shù)關(guān)系如圖所示.有下列說法: AB之間的距離為1200m;②甲行走的速度是乙的15倍;③;④.以上結(jié)論正確的有( )

A.①④B.①②③C.①③④D.①②④

【答案】A

【解析】

①由x=0時(shí)y=1200,可得出A、B之間的距離為1200m,結(jié)論①正確;②根據(jù)速度=路程÷時(shí)間可求出乙的速度,再根據(jù)甲的速度=路程÷時(shí)間-乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,結(jié)論②正確;③根據(jù)路程=二者速度和×運(yùn)動(dòng)時(shí)間,即可求出b=800,結(jié)論③錯(cuò)誤;④根據(jù)甲走完全程所需時(shí)間=兩地間的距離÷甲的速度+4,即可求出a=34,結(jié)論④正確.綜上即可得出結(jié)論.

①當(dāng)x=0時(shí),y=1200,

A、B之間的距離為1200m,結(jié)論①正確;

②乙的速度為1200÷(244)=60(m/min)

甲的速度為1200÷1260=40(m/min),

60÷40=1.5,

∴乙行走的速度是甲的1.5倍,結(jié)論②錯(cuò)誤;

b=(60+40)×(24412)=800,結(jié)論③錯(cuò)誤;

a=1200÷40+4=34,結(jié)論④正確。

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD的四邊BA,CB,DCAD分別延長至點(diǎn)EF,GH,使得AEBFCGDH.已知AB1,BC2,∠BEF30°,則tanAEH的值為( 。

A.2B.C.1D. +1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖:分別以△ABC的各邊為邊,在BC邊的同側(cè)作等邊三角形ABE、等邊三角形CBD和等邊三角形ACF,連結(jié)DE,DF

1)試說明四邊形DEAF為平行四邊形.

2)當(dāng)△ABC滿足什么條件時(shí),四邊形DEAF為矩形?并說明理由;

3)當(dāng)△ABC滿足什么條件時(shí),四邊形DEAF為菱形.直接寫出答案   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過點(diǎn)

)分別求這兩個(gè)函數(shù)的表達(dá)式.

)將直線向上平移個(gè)單位長度后與軸交于點(diǎn),與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為,連接、,求點(diǎn)的坐標(biāo)及的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2.

(1)第一批飲料進(jìn)貨單價(jià)多少元?

(2)若二次購進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的一部分如圖所示,給出以下結(jié)論:;當(dāng)時(shí),函數(shù)有最大值;方程的解是,,其中結(jié)論錯(cuò)誤的個(gè)數(shù)是  

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市正在開展“食品安全城市”創(chuàng)建活動(dòng),為了解學(xué)生對(duì)食品安全知識(shí)的了解情況,學(xué)校從20191月﹣5月等月隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查(被調(diào)查學(xué)生每人只能選一項(xiàng)),將調(diào)查站果按照“A非常了解、B了解、C了解較少、D不了解”四類情況分別選行統(tǒng)計(jì),并繪制成圖1、圖2兩幅統(tǒng)計(jì)圖、根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題:

1   月抽取的調(diào)查人數(shù)最少:   月抽取的調(diào)查人數(shù)中男生、女生人數(shù)相等;

2)求圖2中“D不了解”在扇形圖中所占的圓心角α的度數(shù):

3)若該校20195月份在校學(xué)生3600名,請(qǐng)你估計(jì)對(duì)食品安全知識(shí)“A非常了解和B了解”的學(xué)生總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于兩點(diǎn),拋物線經(jīng)過點(diǎn),與軸另一交點(diǎn)為,頂點(diǎn)為

1)求拋物線的解析式;

2)在軸上找一點(diǎn),使的值最小,求的最小值;

3)在拋物線的對(duì)稱軸上是否存在一點(diǎn),使得?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案