【題目】如圖是某臺階的一部分,如果A點的坐標(biāo)為(0,0),B點的坐標(biāo)為(1,1),

(1)請建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出其余各點的坐標(biāo);

(2)如果臺階有10級,請你求出該臺階的長度和高度;

(3)若這10級臺階的寬度都是2m,單位長度為1m,現(xiàn)要將這些臺階鋪上地毯,需要多少平方米?

【答案】(1)建立平面直角坐標(biāo)系見解析,C(2,2),D(3,3),E(4,4),F(xiàn)(5,5);(2)11;10;(3)需要42平方米.

【解析】

(1)以點A為坐標(biāo)原點建立平面直角坐標(biāo)系,然后寫出各點的坐標(biāo)即可;

(2)根據(jù)平移的性質(zhì)求橫向與縱向的長度,即為臺階的長度和高度;

(3)根據(jù)(2)求出地毯的長度,然后乘以臺階的寬度計算即可得解.

(1)建立平面直角坐標(biāo)系如圖所示,

C(2,2),D(3,3),E(4,4),F(xiàn)(5,5);

(2)臺階的長度:1×(10+1)=11,

高度:1×10=10;

(3)∵單位長度為1m,

∴地毯的長度為:(11+10)×1=21m,

∵臺階的寬度都是2m,

∴地毯的面積為21×2=42m2,

答:將這些臺階鋪上地毯,需要42平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)a使關(guān)于x的不等式組 有且僅有四個整數(shù)解,且使關(guān)于y的分式方程 + =2有非負(fù)數(shù)解,則所以滿足條件的整數(shù)a的值之和是(
A.3
B.1
C.0
D.﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠ACDABC的外角,∠A=40°,BE平分∠ABC,CE平分∠ACD,且BE、CE交于點E.

(1)求∠E的度數(shù).

(2)請猜想∠A與∠E之間的數(shù)量關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如果點P坐標(biāo)為(m,n),向量 可以用點P的坐標(biāo)表示為 =(m,n).
已知: =(x1 , y1), =(x2 , y2),如果x1x2+y1y2=0,那么 互相垂直,下列四組向量:
=(2,1), =(﹣1,2);
=(cos30°,tan45°), =(1,sin60°);
=( ,﹣2), =( + );
=(π0 , 2), =(2,﹣1).
其中互相垂直的是(填上所有正確答案的符號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已點A30)、B(-53),將點A向左平移6個單位到達(dá)C將點B向下平移6個單位到達(dá)D

1)寫出C點、D點的坐標(biāo)C __________D ____________ ;

2)把這些點按ABCDA順次連接起來,這個圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知, ,試說明BECF

完善下面的解答過程,并填寫理由或數(shù)學(xué)式

已知

AE ( 。

(  )

已知

( 。

DCAB(  )

( 。

已知

( 。

BECF(  ) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正確的個數(shù)有( )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為等邊△ABC的邊AC上一點,E為直線AB上一點,CD=BE.

(1)如圖1,求證;AD=DE;

(2)如圖2,DE交CB于點P.

①若DE⊥AC,PC=6,求BP的長;

②猜想PD與PE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)的圖象分別與x軸、y軸相交于點A、B,且與經(jīng)過點C(2,0)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標(biāo)為4,直線CD與y軸相交于點E.

(1)直線CD的函數(shù)表達(dá)式為   ;(直接寫出結(jié)果)

(2)點Q為線段DE上的一個動點,連接BQ.

若直線BQ將BDE的面積分為1:2兩部分,試求點Q的坐標(biāo);

BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的坐標(biāo)軸上,請直接寫出點Q的坐標(biāo): .

查看答案和解析>>

同步練習(xí)冊答案