如圖,直線y=x+m和拋物線y=x2+bx+c都經(jīng)過點A(2,0),B(5,3).
(1)求m的值和拋物線的解析式;
(2)求不等式ax2+bx+c≤x+m的解集(直接寫出答案);
(3)若拋物線與y軸交于C,求△ABC的面積.
(1)∵直線y=x+m經(jīng)過A點,
∴當x=2時,y=0,
∴m+2=0,
∴m=-2,
∵拋物線y=x2+bx+c過A(2,0),B(5,3),
4+2b+c=0
25+5b+c=3
,
解得
b=-6
c=8

∴拋物線的解析式為y=x2-6x+8;

(2)由圖可知,不等式ax2+bx+c≤x+m的解集為2≤x≤5;

(3)設直線AB與y軸交于D,
∵A(2,0)B(5,3),
∴直線AB的解析式為y=x-2,
∴點D(0,-2),
由(1)知C(0,8),
∴S△BCD=
1
2
×10×5=25,
∵S△ACD=
1
2
×10×2=10,
∴S△ABC=S△BCD-S△ACD=25-10=15.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點P作PE⊥AB交AC于點E.
①過點E作EF⊥AD于點F,交拋物線于點G.當t為何值時,線段EG最長?
②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應的t值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.
(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是一個拋物線形拱橋的示意圖,橋的跨度AB為100米,支撐橋的是一些等距的立柱,相鄰立柱的水平距離為10米(不考慮立柱的粗細),其中距A點10米處的立柱FE的高度為3.6米.
(1)求正中間的立柱OC的高度;
(2)是否存在一根立柱,其高度恰好是OC的一半?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取點A,過點A作AH⊥x軸于點H.在拋物線y=x2(x>0)上取點P,在y軸上取點Q,使得以P,O,Q為頂點,且以點Q為直角頂點的三角形與△AOH全等,則符合條件的點A的坐標是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖拋物線l1與x軸的交點的坐標為(-1,0)和(-5,0),與y軸的交點坐標為(0,2.5).
(1)求拋物線l1的解析式;
(2)拋物線l2與拋物線l1關于原點對稱,現(xiàn)有一身高為1.5米的人撐著傘與拋物線l2的對稱軸重合,傘面弧AB與拋物線l2重合,頭頂最高點C與傘的下沿AB在同一條直線上(如圖所示不考慮其他因素),如果雨滴下降的軌跡是沿著直線y=mx+b運動,那么不被淋到雨的m的取值范圍是多少?
(3)將傘的下沿AB沿著拋物線l2對稱軸上升10厘米至A1B1,A1B1比AB長8厘米,拋物線l2除頂點M不動外仍經(jīng)過弧A1B1(其余條件不變),那么被雨淋到的幾率是擴大了還是縮小了,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象過點A(2,4),頂點的橫坐標為
1
2
,它的圖象與x軸交于兩點B(x1,0)、C(x2,0),與y軸交于點D,且x12+x22=13.試問:y軸上是否存在點P,使得△POB與△DOC相似(O為坐標原點)?若存在,請求出過P、B兩點直線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么這個函數(shù)的解析式為( 。
A.y=
1
3
x2+
2
3
x+1
B.y=
1
3
x2+
2
3
x-1
C.y=
1
3
x2-
2
3
x-1
D.y=
1
3
x2-
2
3
x+1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=
x2
3
(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DEAC,交y2于點E,則
DE
AB
=______.

查看答案和解析>>

同步練習冊答案