【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸上,∠B=120°,OA=4,將菱形OABC繞原點(diǎn)順時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置,則點(diǎn)B′的坐標(biāo)為( )
A. (2,﹣2)B. (,-)C. (2,﹣2)D. (,-)
【答案】A
【解析】
首先連接OB,OB′,過點(diǎn)B′作B′E⊥x軸于E,由旋轉(zhuǎn)的性質(zhì),易得∠BOB′=105°,由菱形的性質(zhì),易證得△AOB是等邊三角形,即可得OB′=OB=OA=2,∠AOB=60°,繼而可求得∠AOB′=45°,由等腰直角三角形的性質(zhì),即可求得答案.
連接OB,OB′,過點(diǎn)B′作B′E⊥x軸于E,
根據(jù)題意得:∠BOB′=105°,
∵四邊形OABC是菱形,
∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,
∴△OAB是等邊三角形,
∴OB=OA=4,
∴∠AOB′=∠BOB′-∠AOB=105°-60°=45°,OB′=OB=4,
∴OE=B′E=OB′sin45°=4×=2,
∴點(diǎn)B′的坐標(biāo)為:(2,-2).
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A(﹣6,0),C(0,2).將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),使點(diǎn)A恰好落在OB上的點(diǎn)A1處,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)E是AC的中點(diǎn).
(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為2,∠B=45°,AC=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)P從點(diǎn)A開始,沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng)(點(diǎn)Q到達(dá)點(diǎn)C運(yùn)動(dòng)停止).如果點(diǎn)P,Q分別從點(diǎn)A,B同時(shí)出發(fā)t秒(t>0)
(1)t為何值時(shí),PQ=6cm?
(2)t為何值時(shí),可使得△PBQ的面積等于8cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個(gè)銷售旺季的80天里,日銷售量y(kg)與時(shí)間第t天之間的函數(shù)關(guān)系式為(,t為整數(shù)),銷售單價(jià)p(元/kg)與時(shí)間第t天之間滿足一次函數(shù)關(guān)系如下表:
(1)直接寫出銷售單價(jià)p(元/kg)與時(shí)間第t天之間的函數(shù)關(guān)系式.
(2)在整個(gè)銷售旺季的80天里,哪一天的日銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AD方向以每秒1個(gè)單位的速度運(yùn)動(dòng),連接BP,作點(diǎn)A關(guān)于直線BP的對(duì)稱點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).在動(dòng)點(diǎn)P在射線AD上運(yùn)動(dòng)的過程中,則使點(diǎn)E到直線BC的距離等于3時(shí)對(duì)應(yīng)的t的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提升學(xué)生的藝術(shù)素養(yǎng),某校計(jì)劃開設(shè)四門選修課程:聲樂、舞蹈、書法、攝影.要求每名學(xué)生必須選修且只能選修一門課程,為保證計(jì)劃的有效實(shí)施,學(xué)校隨機(jī)對(duì)部分學(xué)生進(jìn)行了一次調(diào)查,并將調(diào)査結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
學(xué)生選修課程統(tǒng)計(jì)表
課程 | 人數(shù) | 所占百分比 |
聲樂 | 14 | |
舞蹈 | 8 | |
書法 | 16 | |
攝影 | ||
合計(jì) |
根據(jù)以上信息,解答下列問題:
(1) , .
(2)求出的值并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該校有1500名學(xué)生,請(qǐng)你估計(jì)選修“聲樂”課程的學(xué)生有多少名.
(4)七(1)班和七(2)班各有2人選修“舞蹈”課程且有舞蹈基礎(chǔ),學(xué)校準(zhǔn)備從這4人中隨機(jī)抽取2人編排“舞蹈”在開班儀式上表演,請(qǐng)用列表法或畫樹狀圖的方法求所抽取的2人恰好來自同一個(gè)班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形擺放在一起(如圖1),點(diǎn)A為公共頂點(diǎn),∠BAC=∠AED=90°,它們的斜邊長(zhǎng)為2.若△ABC固定不動(dòng),把△ADE繞點(diǎn)A旋轉(zhuǎn)到如圖2的位置時(shí),AD、AE與邊BC的交點(diǎn)分別為M、N(點(diǎn)M不與點(diǎn)B重合,點(diǎn)N不與點(diǎn)C重合).
(1)證明:△BAN∽△CMA;
(2)求BNCM的值;
(3)當(dāng)△ADE繞點(diǎn)A繼續(xù)旋轉(zhuǎn)到如圖3的位置時(shí),AD交BC于點(diǎn)M,AE、BC的延長(zhǎng)線交于點(diǎn)N,此時(shí)BNCM的值是否發(fā)生變化?請(qǐng)你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) y ax2 bx c(a 0) 的圖象如圖所示,并且關(guān)于 x 的一元二次方程 ax2 bx c m 0 有兩個(gè)不相等的實(shí) 數(shù)根,下列結(jié)論:① b2 4ac 0 ;② abc 0 ;③ a b c 0 ;④ m 2,其中,正確的個(gè)數(shù)_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com