【題目】如圖①②,的兩邊分別平行.

1)在圖①中,有什么數(shù)量關系?為什么?

2)在圖②中,有什么數(shù)量關系?為什么?

3)由(1)(2)你能得出什么結論?用一句話概括你得到的結論.

【答案】1B=∠E,理由見解析;(2B+∠E=180°,理由見解析;(3)如果兩個角的兩邊分別平行,那么這兩個角相等或互補.

【解析】

1)由已知ABEF,DEBC,根據(jù)平行線的性質(zhì)得:∠B=EOC,∠EOC=E,即可得出答案;

2)由已知ABDE,EFBC,得:∠B=DOC,∠BOE+E=180°,即可得出答案;(3)由(1)和(2)得出結論如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補.

解:(1)∠B=E

理由:∵BAEF,BCDE,

∴∠B=EOC,∠EOC=E

∴∠B=E;

2)∠B+E=180°

理由:∵BAEDBCEF,

∴∠B=DOC,∠BOE+E=180°,

∵∠DOC=BOE

∴∠B+E=180°;

3)如果兩個角的兩邊分別平行,那么這兩個角相等或互補.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察一列數(shù):12,4,8,16,我們發(fā)現(xiàn),這一列數(shù)從第二項起,每一項與它前一項的比都等于2.一般地,如果一列數(shù)從第二項起,每一項與它前一項的比都等于同一個常數(shù),這一列數(shù)就叫做等比數(shù)列,這個常數(shù)就叫做等比數(shù)列的公比.

(1)等比數(shù)列3,-12,48,的第4項是______;

(2)如果一列數(shù)a1,a2,a3a4,是等比數(shù)列,且公比為q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2a4=a3q=(a1q2)q=a1q3,則a5=_______,an=______(a1q的式子表示)

(3)一個等比數(shù)列的第2項是9,第4項是36,求它的公比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.AOC=COB,則∠BOF=_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=3,BC=2,點O在AC邊上,⊙O與AB、BC分別切于點D、E,則⊙O的半徑長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點B落在點D的位置,則∠1-2的度數(shù)是(

A. 32° B. 64° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由一些大小相同的小正方體組合成的簡單幾何體.根據(jù)要求完成下列題目.

1)正面圖中有______塊小正方體;

2)請在下面方格紙中分別畫出它的左視圖和俯視圖(畫出的圖都用鉛筆涂上陰影)

3)用小正方體搭一個幾何體,使得它的左視圖和俯視圖與你在(2)中所畫的圖一致,則這樣的幾何體最多要______塊小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形ABD中,∠A=90°,AB=AD=2,作△ABD關于直線BD對稱的△CBD,已知點F為線段AB上一點,且AF=m,連接CF,作∠FCE=90°,CE交AD的延長線于點E.

(1)求證:△BCF≌△DCE;

(2)若AE=n,且mn=3,求m2+n2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,M是弧AB的中點,過點M的弦MN交AB于點C,設⊙O的半徑為4cm,MN=4 cm,則∠ACM的度數(shù)是(
A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們把橫 、縱坐標都是整數(shù)的點叫做整點.已知點

A0,4),點B軸正半軸上的整點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當m=3時,點B的橫坐標的所有可能值是 ;當點B的橫坐標為4nn為正整數(shù))時,m= (用含n的代數(shù)式表示.)

查看答案和解析>>

同步練習冊答案