【題目】二次函數(shù)y(x1)2+2圖象的頂點坐標(biāo)是( )

A.(2,﹣1)B.(21)C.(1,2)D.(12)

【答案】D

【解析】

利用頂點式方程可直接得到拋物線的頂點坐標(biāo).

y(x1)2+2,

∴頂點坐標(biāo)為(1,2),

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知4|x+2|+(y﹣5)2=0,A=3x2﹣2xy+y2 , B=x2+xy﹣5y2 , 求A﹣3B的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個數(shù)中最大的數(shù)是( 。
A.﹣2
B.﹣1
C.0
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)發(fā)現(xiàn):

如圖1,點A為線段BC外一動點,且BC=aAB=b

填空:當(dāng)點A位于     時,線段AC的長取得最大值,且最大值為     (用含a,b的式子表示)

(2)應(yīng)用:

A為線段BC外一動點,且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE

①請找出圖中與BE相等的線段,并說明理由;

②直接寫出線段BE長的最大值.

(3)拓展:

如圖3,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,請直接寫出線段AM長的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件是必然事件的是( 。

A.有兩邊及一角對應(yīng)相等的兩三角形全等

B.a2b2 則有ab

C.方程x2x+10有兩個不等實根

D.圓的切線垂直于過切點的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究實驗:《鐘面上的數(shù)字》

實驗?zāi)康模毫私忡娒嫔蠒r針與分針在轉(zhuǎn)動時的內(nèi)在聯(lián)系,學(xué)會用一元一次方程解決鐘面上的有關(guān)數(shù)學(xué)問題,體會數(shù)學(xué)建模思想.

實驗準(zhǔn)備:機械鐘(手表)一只

實驗內(nèi)容與步驟:

觀察與思考:

1)時針每分鐘轉(zhuǎn)動__°,分針每分鐘轉(zhuǎn)動__°

2)若時間為830,則鐘面角為__°,(鐘面角是時針與分針?biāo)傻慕牵?/span>

操作與探究:

1轉(zhuǎn)動鐘面上的時針與分針,使時針與分針重合在12點處.再次轉(zhuǎn)動鐘面上的時針與分針,算一算,什么時刻時針與分針再次重合?一天24小時中,時針與分針重合多少次?(一天中起始時刻和結(jié)束時刻時針與分針重合次數(shù)只算一次,下同)

2)轉(zhuǎn)動鐘面上的時針與分針,使時針與分針重合在12點處,再次轉(zhuǎn)動鐘面上的時針與分針,算一算,什么時刻鐘面角第一次為90°?一天24小時中,鐘面角為90°多少次?

拓展延伸:

一天24小時中,鐘面角為180°__次,鐘面角為0n180____次.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(-7,1),B(1,1),C(1,7).線段DE的端點坐標(biāo)是D(7,-1),E(-1,-7).

(1)試說明如何平移線段AC,使其與線段ED重合;

(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn),使AC的對應(yīng)邊為DE,請直接寫出點B的對應(yīng)點F的坐標(biāo);

(3)畫出(2)中的△DEF,并和△ABC同時繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°.畫出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家文具店出售同樣的鋼筆和本子,鋼筆每支18元,本子每本2元,甲商店推出的優(yōu)惠方法為買一支鋼筆送兩本本子;乙商店的優(yōu)惠方法為按總價的九折優(yōu)惠.小麗想購買5支鋼筆,本子x本(x≥10

1)若到甲商店購買,應(yīng)付   元(用代數(shù)式表示).

2)若到乙商店購買,應(yīng)付   元(用代數(shù)式表示).

3)若小麗要買的本子為10本,應(yīng)選擇哪家商店?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出數(shù)軸上所有大于-4,且小于2的整數(shù);

查看答案和解析>>

同步練習(xí)冊答案