【題目】如圖是某地一座拋物線形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A、B兩點,拱橋最高點C到AB的距離為4m,AB=12m,D、E為拱橋底部的兩點,且DE∥AB,點E到直線AB的距離為5m,則DE的長為m.

【答案】18
【解析】解:如圖所示,建立平面直角坐標系,x軸在直線DE上,y軸經(jīng)過最高點C. 設(shè)AB與y軸交于點H,
∵AB=12,
∴AH=BH=6,
由題可知:
OH=5,CH=4,
∴OC=5+4=9,
∴B(6,5),C(0,9)
設(shè)該拋物線的解析式為:y=ax2+k,
∵頂點C(0,9),
∴拋物線y=ax2+9,
代入B(6,5)
∴5=36a+9,解得a=﹣ ,
∴拋物線:y=﹣ x2+9,
當y=0時,0=﹣ x2+9,解得x=±9,
∴E(9,0),D(﹣9,0),
∴OE=OD=9,
∴DE=OD+OE=9+9=18,
所以答案是:18.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DEAB,過點EEFDE,交BC的延長線于點F.

(1)求證:△CEF是等腰三角形;

(2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=10.點Dy軸上一點,其坐標為(0,2),點P從點A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.

(1)當點P經(jīng)過點C時,求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長方形沿著OP折疊,點B的對應(yīng)點B′恰好落在AC邊上,求點P的坐標.

(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的三條邊所得的弦長相等,則下列說法正確的是(
A.點O是△ABC的內(nèi)心
B.點O是△ABC的外心
C.△ABC是正三角形
D.△ABC是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點O是邊長為2的正方形ABCD的中心.
(1)若函數(shù)y=x2+m的圖象過點C,求這個函數(shù)的解析式;并判斷其函數(shù)圖象是否過A點.
(2)若將(1)中的函數(shù)圖象先向右平移1個單位,再向上平移2個單位,直接寫出平移后函數(shù)的解析式和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象如圖所示,則下列結(jié)論①;②;③④當,正確的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,

(1)描出A(﹣4,3)、B(﹣1,0)、C(﹣2,3)三點.

(2)△ABC 的面積是多少?

(3)作出△ABC 關(guān)于 y 軸的對稱圖形.

(4)請在x 軸上求作一點P,使△PA1C1 的周長最小,并直接寫出點P 的坐標

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P是四邊形ABCD內(nèi)一點,PA=PB=PC=PD,又AB=CD,試確定四邊形ABCD的形狀,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案