【題目】甲、乙兩班舉行班際電腦漢字輸入比賽,各選10名選手參賽,各班參賽學(xué)生每分鐘輸入漢字個(gè)數(shù)統(tǒng)計(jì)如下表:
通過(guò)計(jì)算可知兩組數(shù)據(jù)的方差分別為S2甲=2.0,S2乙=2.7,則下列說(shuō)法:①兩組數(shù)據(jù)的平均數(shù)相同;②甲組學(xué)生比乙組學(xué)生的成績(jī)穩(wěn)定;③兩組學(xué)生成績(jī)的中位數(shù)相同;④兩組學(xué)生成績(jī)的眾數(shù)相同.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】B
【解析】
①由平均數(shù)的定義知,
甲班學(xué)生的平均成績(jī)?yōu)椋?/span>=135,
乙班學(xué)生的平均成績(jī)?yōu)椋?/span>=135,所以他們的平均數(shù)相同.
②甲組學(xué)生比乙組學(xué)生的成績(jī)方差小,∴甲組學(xué)生比乙組學(xué)生的成績(jī)穩(wěn)定.
③甲班學(xué)生的成績(jī)按從小到大排列:132、134、134、135、135、135、135、136、137、137,可見(jiàn)其中位數(shù)是135;乙班學(xué)生的成績(jī)按從小到大排列:133、134、134、134、134、135、136、136、137、137,可見(jiàn)其中位數(shù)是134.5,所以兩組學(xué)生成績(jī)的中位數(shù)不相同;
④甲班學(xué)生成績(jī)的眾數(shù)是135,乙班學(xué)生成績(jī)的眾數(shù)是134,所以兩組學(xué)生成績(jī)的眾數(shù)不相同.故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象x經(jīng)過(guò)點(diǎn)A(1,4),B(2,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在y軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形AOBC,以O為坐標(biāo)原點(diǎn),OB、OA分別在x軸、y軸上,點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(10,0),點(diǎn)E是BC邊上一點(diǎn),把長(zhǎng)方形AOBC沿AE翻折后,C點(diǎn)恰好落在x軸上點(diǎn)F處.
(1)求點(diǎn)E、F的坐標(biāo);
(2)求AF所在直線的函數(shù)關(guān)系式;
(3)在x軸上求一點(diǎn)P,使△PAF成為以AF為腰的等腰三角形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,一次函數(shù)的圖像分別與、軸交于兩點(diǎn),正比例函數(shù)的圖像與交于點(diǎn).
(1)求的值及的解析式;
(2)求的值;
(3)在坐標(biāo)軸上找一點(diǎn),使以為腰的為等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將一個(gè)點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫做這個(gè)點(diǎn)的“互換點(diǎn)”,如(-3,5)與(5,-3)是一對(duì)“互換點(diǎn)”。
(1)任意一對(duì)“互換點(diǎn)”________(填“都能”或“都不能”)在一個(gè)反比例函數(shù)的圖象上;
(2)M、N是一對(duì)“互換點(diǎn)”,若點(diǎn)M的坐標(biāo)為(2,-5),求直線MN的表達(dá)式;
(3)在拋物線的圖象上有一對(duì)“互換點(diǎn)”A、B,其中點(diǎn)A在反比例函數(shù)的圖象上,直線AB經(jīng)過(guò)點(diǎn)P(,),求此拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)學(xué)校積極開(kāi)展陽(yáng)光體育活動(dòng),組織了九年級(jí)學(xué)生定點(diǎn)投籃,規(guī)定每人投籃3次.現(xiàn)對(duì)九年級(jí)(1)班每名學(xué)生投中的次數(shù)進(jìn)行統(tǒng)計(jì),繪制成如下的兩幅統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,回答下列問(wèn)題.
(1)求出九年級(jí)(1)班學(xué)生人數(shù);
(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)求出扇形統(tǒng)計(jì)圖中3次的圓心角的度數(shù);
(4)若九年級(jí)有學(xué)生200人,估計(jì)投中次數(shù)在2次以上(包括2次)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形置于平面直角坐標(biāo)系中,在軸上,在軸上,點(diǎn)的坐標(biāo)為,對(duì)角線與相交于點(diǎn),是第一象限內(nèi)一點(diǎn).
(1)如圖1,若,,試判斷四邊形的形狀,并說(shuō)明理由;
(2)如圖2,當(dāng)點(diǎn)使得時(shí),求證:;
(3)在(2)的條件下,如果與恰好相等,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)三角形的所有頂點(diǎn)都在網(wǎng)格的格點(diǎn)上,那么這個(gè)三角形叫做格點(diǎn)三角形,請(qǐng)?jiān)谙铝薪o定網(wǎng)格中按要求解答下面問(wèn)題:
(1)直接寫(xiě)出圖1方格圖(每個(gè)小方格邊長(zhǎng)均為1)中格點(diǎn)△ABC的面積;
(2)已知△A1B1C1三邊長(zhǎng)分別為、、,在圖2方格圖(每個(gè)小方格邊長(zhǎng)均為1)中畫(huà)出格點(diǎn)△A1B1C1;
(3)已知△A2B2C2三邊長(zhǎng)分別為、、 (m>0,n>0,且m≠n)在圖3所示4n×3m網(wǎng)格中畫(huà)出格點(diǎn)△A2B2C2,并求其面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技開(kāi)發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價(jià)定為3000元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵(lì)商家購(gòu)買該新型產(chǎn)品,公司決定商家一次購(gòu)買這種新型產(chǎn)品不超過(guò)10件時(shí),每件按3000元銷售;若一次購(gòu)買該種產(chǎn)品超過(guò)10件時(shí),每多購(gòu)買一件,所購(gòu)買的全部產(chǎn)品的銷售單價(jià)均降低10元,但銷售單價(jià)均不低于2600元.
(1)商家一次購(gòu)買這種產(chǎn)品多少件時(shí),銷售單價(jià)恰好為2600元?
(2)設(shè)商家一次購(gòu)買這種產(chǎn)品x件,開(kāi)發(fā)公司所獲的利潤(rùn)為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購(gòu)買產(chǎn)品的件數(shù)超過(guò)某一數(shù)量時(shí),會(huì)出現(xiàn)隨著一次購(gòu)買的數(shù)量的增多,公司所獲的利潤(rùn)反而減少這一情況.為使商家一次購(gòu)買的數(shù)量越多,公司所獲的利潤(rùn)最大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元(其它銷售條件不變)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com