如圖,直線y=x與雙曲線y=數(shù)學(xué)公式交于點(diǎn)A、C,且OA=OC=數(shù)學(xué)公式
(1)求點(diǎn)A的坐標(biāo);
(2)以AC為對角線作矩形ABCD交x軸正半軸于B,交x軸負(fù)半軸于D,求點(diǎn)B、D坐標(biāo).

解:(1)∵點(diǎn)A在直線y=x上,設(shè)A(a,a),a>0.
作AM⊥x軸于M,
∴OM=AM=a,
在Rt△AOM中,由勾股定理,
得OM2+AM2=OA2,
∴a2+a2=,且a>0,
∴a=1,
∴A(1,1);

(2)∵四邊形ABCD是矩形,
∴AO=BO=CO=DO,
∴BO=OD=,
∵點(diǎn)B在x軸的正半軸,點(diǎn)D在x軸的負(fù)半軸,
∴B(,0),D(-,0).
分析:(1)根據(jù)點(diǎn)A在直線y=x上可設(shè)A(a,a),a>0.作AM⊥x軸于M,故可得出OM=AM=a,在Rt△AOM中根據(jù)勾股定理即可得出a的值,故可得出A點(diǎn)坐標(biāo);
(2)根據(jù)四邊形ABCD是矩形可知AO=BO=CO=DO=,再由點(diǎn)B在x軸的正半軸,點(diǎn)D在x軸的負(fù)半軸上即可得出結(jié)論.
點(diǎn)評:本題考查的是反比例函數(shù)綜合題,涉及到勾股定理及矩形的性質(zhì),比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,帆船A和帆船B在太湖湖面上訓(xùn)練,O為湖面上的一個(gè)定點(diǎn),教練船靜候于點(diǎn)O,訓(xùn)練時(shí)要求A、B兩船始終關(guān)于O點(diǎn)對稱.以O(shè)為原點(diǎn),建立如圖所示的坐標(biāo)系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y=
4x
上運(yùn)動,湖面風(fēng)平浪靜,雙帆遠(yuǎn)影優(yōu)美,訓(xùn)練中檔教練船與A、B兩船恰好在直線y=x上時(shí),三船同時(shí)發(fā)現(xiàn)湖面上有一遇險(xiǎn)的C船,此時(shí)教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時(shí)測得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點(diǎn)表示).
(1)發(fā)現(xiàn)C船時(shí),A、B、C三船所在位置的坐標(biāo)分別為A(
 
,
 
)、B(
 
,
 
)和C(
 
,
 
);
(2)發(fā)現(xiàn)C船,三船立即停止訓(xùn)練,并分別從A、O、B三點(diǎn)出發(fā)沿最短路線同時(shí)前往救援,設(shè)A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,經(jīng)過點(diǎn)A,C,B的拋物線的一部分與經(jīng)過點(diǎn)A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中精英家教網(wǎng)點(diǎn),且P(-1,0),C(
2
-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過點(diǎn)A,E,B的拋物線的解析式;
(2)若點(diǎn)F在“雙拋物線”上,且S△FAP=S△CAP,請你直接寫出點(diǎn)F的坐標(biāo);
(3)如果一條直線與“雙拋物線”只有一個(gè)交點(diǎn),那么這條直線叫做“雙拋物線”的切線.若過點(diǎn)E與x軸平行的直線與“雙拋物線”交于點(diǎn)G,求經(jīng)過點(diǎn)G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個(gè)問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸 上.設(shè)矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖南省中考真題 題型:解答題

九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐--應(yīng)用--探究的過程:
(1)實(shí)踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標(biāo)系,請你求出拋物線的解析式;
(2)應(yīng)用:按規(guī)定機(jī)動車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識,他們借助上述拋物線模型,提出了以下兩個(gè)問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長為l求l的最大值;
II.如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M,交拋物線對稱軸于點(diǎn)N,P 為直線0M上一動點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q,問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,帆船A和帆船B在太湖湖面上訓(xùn)練,O為湖面上的一個(gè)定點(diǎn),教練船靜候于O點(diǎn),訓(xùn)練時(shí)要求A、B兩船始終關(guān)于O點(diǎn)對稱.以O(shè)為原點(diǎn),建立如圖所示的坐標(biāo)系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y=上運(yùn)動,湖面風(fēng)平浪靜,雙帆遠(yuǎn)影優(yōu)美,訓(xùn)練中當(dāng)教練船與A、B兩船恰好在直線y=x上時(shí),三船同時(shí)發(fā)現(xiàn)湖面上有一遇險(xiǎn)的C船,此時(shí)教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時(shí)測得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點(diǎn)表示).

1.發(fā)現(xiàn)C船時(shí),A、B、C三船所在位置的坐標(biāo)分別為A(_______,_______)、B(_______,_______)和C(_______,_______);

2.發(fā)現(xiàn)C船,三船立即停止訓(xùn)練,并分別從A、O、B三點(diǎn)出發(fā)沿最短路線同時(shí)前往救援,設(shè)A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由

 

查看答案和解析>>

同步練習(xí)冊答案