【題目】關(guān)于x的方程ax2﹣(3a+1)x+2(a+1)=0有兩個(gè)不相等的實(shí)根x1、x2,且有x1﹣x1x2+x2=1﹣a,則a的值是( )
A. 1B. ﹣1C. 1或﹣1D. 2
【答案】B
【解析】
由關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,得到根的判別式的值大于0列出關(guān)于a的不等式,求出不等式的解集得到a的范圍,再利用根與系數(shù)的關(guān)系表示出兩根之和與兩根之積,代入已知的等式中得到關(guān)于a的方程,求出方程的解即可得到a的值.
解:依題意△>0,即(3a+1)2﹣8a(a+1)>0,
即a2﹣2a+1>0,(a﹣1)2>0,a≠1,
∵關(guān)于x的方程ax2﹣(3a+1)x+2(a+1)=0有兩個(gè)不相等的實(shí)根x1、x2,且有x1﹣x1x2+x2=1﹣a,
∴x1﹣x1x2+x2=1﹣a,
∴x1+x2﹣x1x2=1﹣a,
∴=1﹣a,
解得:a=±1,又a≠1,
∴a=﹣1.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)用2500元購進(jìn)A、B兩種新型節(jié)能臺(tái)燈共50盞,這兩種臺(tái)燈的進(jìn)價(jià)、標(biāo)價(jià)如下表所示.
類型 價(jià)格 | A型 | B型 |
進(jìn)價(jià)(元/盞) | 40 | 65 |
標(biāo)價(jià)(元/盞) | 60 | 100 |
(1)這兩種臺(tái)燈各購進(jìn)多少盞?
(2)在每種臺(tái)燈銷售利潤不變的情況下,若該商場(chǎng)計(jì)劃銷售這批臺(tái)燈的總利潤至少為1400元,問至少需購進(jìn)B種臺(tái)燈多少盞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②均是8×8的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),點(diǎn)A、B、M、N均落在格點(diǎn)上,在圖①、圖②給定的網(wǎng)格中按要求作圖.
(1)在圖①中的格線MN上確定一點(diǎn)P,使PA與PB的長度之和最小
(2)在圖②中的格線MN上確定一點(diǎn)Q,使∠AQM=∠BQM.
要求:只用無刻度的直尺,保留作圖痕跡,不要求寫出作法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)習(xí)小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( 。
A. 袋中裝有大小和質(zhì)地都相同的3個(gè)紅球和2個(gè)黃球,從中隨機(jī)取一個(gè),取到紅球
B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點(diǎn)數(shù)是偶數(shù)
C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面
D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點(diǎn)數(shù)之和是7或超過9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長交DC的延長線于點(diǎn)E,連接AC、BE.
(1)求證:AB=CE;
(2)若,則四邊形ABEC是什么特殊四邊形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O上有定點(diǎn)C和動(dòng)點(diǎn)P,位于直徑AB的異側(cè),過點(diǎn)C作CP的垂線,與PB的延長線交于點(diǎn)Q,已知:⊙O半徑為,,則CQ的最大值是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx﹣1交y軸于點(diǎn)B,交x軸于點(diǎn)C,以BC為邊的正方形ABCD的頂點(diǎn)A(﹣1,a)在雙曲線y=﹣(x<0)上,D點(diǎn)在雙曲線y=(x>0)上,則k的值為( 。
A. 6 B. 5 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖部分信息如下:
(1)本次比賽參賽選手共有 人,扇形統(tǒng)計(jì)圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為 ;
(2)賽前規(guī)定,成績由高到低前60%的參賽選手獲獎(jiǎng).某參賽選手的比賽成績?yōu)?/span>78分,試判斷他能否獲獎(jiǎng),并說明理由;
(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎(jiǎng)代表發(fā)言,試求恰好選中1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠AOB=70°,以點(diǎn)O為圓心,以適當(dāng)長為半徑作弧分別交OA,OB于C,D兩點(diǎn);分別以C,D為圓心,以大于CD的長為半徑作弧,兩弧相交于點(diǎn)P;以O為端點(diǎn)作射線OP,在射線OP上取點(diǎn)M,連接MC、MD.若測(cè)得∠CMD=40°,則∠MDB=_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com