【題目】如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、B、C,完成下列問(wèn)題:
(1)在圖中標(biāo)出圓心D,則圓心D點(diǎn)的坐標(biāo)為 ;
(2)連接AD、CD,則∠ADC的度數(shù)為 ;
(3)若扇形DAC是一個(gè)圓錐的側(cè)面展開圖,求該圓錐底面半徑.
【答案】(1)(2,0) (2)90°(3)r=
【解析】
(1)利用垂徑定理可作AB和BC的垂直平分線,兩線的交點(diǎn)即為D點(diǎn),可得出D點(diǎn)坐標(biāo);
(2)在△AOD中AO和OD可由坐標(biāo)得出,利用勾股定理可求得AD和CD,過(guò)C作CE⊥x軸于點(diǎn)E,則可證得△OAD≌△EDC,可得∠ADO=∠DCE,可得∠ADO+∠CDE=90°,可得到∠ADC的度數(shù);
(3)先求得扇形DAC的面積,設(shè)圓錐底面半徑為r,利用圓錐側(cè)面展開圖的面積=πrAD,可求得r.
(1)如圖,
分別作AB、BC的垂直平分線,兩線交于點(diǎn)D,
∴D點(diǎn)的坐標(biāo)為(2,0),
故答案為:(2,0);
(2)如圖2,連接AD、CD,過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E,
則OA=4,OD=2,在Rt△AOD中,可求得AD=2,
即⊙D的半徑為2,
且CE=2,DE=4,
∴AO=DE,OD=CE,
在△AOD和△DEC中,,
∴△AOD≌△DEC(SAS),
∴∠OAD=∠CDE,
∴∠CDE+∠ADO=90°,
∴∠ADC=90°,
故答案為:90°;
(3)弧AC的長(zhǎng)=π×2=π,
設(shè)圓錐底面半徑為r則有2πr=π,
解得:r=,
所以圓錐底面半徑為.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某河大堤上有一顆大樹ED,小明在A處測(cè)得樹頂E的仰角為45°,然后沿坡度為1:2的斜坡AC攀行20米,在坡頂C處又測(cè)得樹頂E的仰角為76°,已知ED⊥CD,并且CD與水平地面AB平行,求大樹ED的高度.(精確到1米)
(參考數(shù)據(jù):sin76°≈0.97,cos76°=0.24,tan76°≈4.01, =2.236)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時(shí)針旋轉(zhuǎn)90°至ED,連接AE、DE,△ADE的面積為3,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對(duì)某超市一天內(nèi)購(gòu)買者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)本次一共調(diào)查了多少名購(gòu)買者?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購(gòu)買者,請(qǐng)你估計(jì)使用A和B兩種支付方式的購(gòu)買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)江漢平原的滬蓉(上海﹣成都)高速鐵路即將動(dòng)工.工程需要測(cè)量漢江某一段的寬度.如圖①,一測(cè)量員在江岸邊的A處測(cè)得對(duì)岸岸邊的一根標(biāo)桿B在它的正北方向,測(cè)量員從A點(diǎn)開始沿岸邊向正東方向前進(jìn)100米到達(dá)點(diǎn)C處,測(cè)得∠ACB=68°.
(1)求所測(cè)之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.48.);
(2)除(1)的測(cè)量方案外,請(qǐng)你再設(shè)計(jì)一種測(cè)量江寬的方案,并在圖②中畫出圖形.(不用考慮計(jì)算問(wèn)題,敘述清楚即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為A(﹣4,1),B(﹣1,1),C(﹣1,3)請(qǐng)解答下列問(wèn)題:
(1)畫出△ABC關(guān)于原點(diǎn)O的中心對(duì)稱圖形△A1B1C1,并寫出點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo);
(2)畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出點(diǎn)A旋轉(zhuǎn)至A2經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶承包荒山種了44棵蘋果樹.現(xiàn)在進(jìn)入第三年收獲期.收獲時(shí),先隨意摘了5棵樹上的蘋果,稱得每棵樹摘得的蘋果重量如下(單位:千克)35 35 34 39 37
(1)在這個(gè)問(wèn)題中,總體指的是?個(gè)體指的是?樣本是?樣本容量是?
(2)試根據(jù)樣本平均數(shù)去估計(jì)總體情況,你認(rèn)為該農(nóng)戶可收獲蘋果大約多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在足夠大的空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長(zhǎng);
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com