如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長(zhǎng)線于點(diǎn)F.下列結(jié)論:①CE=CF;②線段EF的最小值為2
3
;③當(dāng)AD=2時(shí),EF與半圓相切;④若點(diǎn)F恰好落在
BC
上,則AD=2
5
;⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過(guò)的面積是16
3
.其中正確結(jié)論的序號(hào)是
 
考點(diǎn):圓的綜合題,垂線段最短,平行線的判定與性質(zhì),等邊三角形的判定與性質(zhì),含30度角的直角三角形,切線的判定,軸對(duì)稱的性質(zhì),相似三角形的判定與性質(zhì)
專(zhuān)題:壓軸題
分析:(1)由點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱可得CE=CD,再根據(jù)DF⊥DE即可證到CE=CF.
(2)根據(jù)“點(diǎn)到直線之間,垂線段最短”可得CD⊥AB時(shí)CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.
(3)連接OC,易證△AOC是等邊三角形,AD=OD,根據(jù)等腰三角形的“三線合一”可求出∠ACD,進(jìn)而可求出∠ECO=90°,從而得到EF與半圓相切.
(4)利用相似三角形的判定與性質(zhì)可證到△DBF是等邊三角形,只需求出BF就可求出DB,進(jìn)而求出AD長(zhǎng).
(5)首先根據(jù)對(duì)稱性確定線段EF掃過(guò)的圖形,然后探究出該圖形與△ABC的關(guān)系,就可求出線段EF掃過(guò)的面積.
解答:解:①連接CD,如圖1所示.
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,
∴CE=CD.
∴∠E=∠CDE.
∵DF⊥DE,
∴∠EDF=90°.
∴∠E+∠F=90°,∠CDE+∠CDF=90°.
∴∠F=∠CDF.
∴CD=CF.
∴CE=CD=CF.
∴結(jié)論“CE=CF”正確.

②當(dāng)CD⊥AB時(shí),如圖2所示.
∵AB是半圓的直徑,
∴∠ACB=90°.
∵AB=8,∠CBA=30°,
∴∠CAB=60°,AC=4,BC=4
3

∵CD⊥AB,∠CBA=30°,
∴CD=
1
2
BC=2
3

根據(jù)“點(diǎn)到直線之間,垂線段最短”可得:
點(diǎn)D在線段AB上運(yùn)動(dòng)時(shí),CD的最小值為2
3

∵CE=CD=CF,
∴EF=2CD.
∴線段EF的最小值為4
3

∴結(jié)論“線段EF的最小值為2
3
”錯(cuò)誤.

③當(dāng)AD=2時(shí),連接OC,如圖3所示.
∵OA=OC,∠CAB=60°,
∴△OAC是等邊三角形.
∴CA=CO,∠ACO=60°.
∵AO=4,AD=2,
∴DO=2.
∴AD=DO.
∴∠ACD=∠OCD=30°.
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,
∴∠ECA=∠DCA.
∴∠ECA=30°.
∴∠ECO=90°.
∴OC⊥EF.
∵EF經(jīng)過(guò)半徑OC的外端,且OC⊥EF,
∴EF與半圓相切.
∴結(jié)論“EF與半圓相切”正確.

④當(dāng)點(diǎn)F恰好落在
BC
上時(shí),連接FB、AF,如圖4所示.
∵點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,
∴ED⊥AC.
∴∠AGD=90°.
∴∠AGD=∠ACB.
∴ED∥BC.
∴△FHC∽△FDE.
FH
FD
=
FC
FE

∵FC=
1
2
EF,
∴FH=
1
2
FD.
∴FH=DH.
∵DE∥BC,
∴∠FHC=∠FDE=90°.
∴BF=BD.
∴∠FBH=∠DBH=30°.
∴∠FBD=60°.
∵AB是半圓的直徑,
∴∠AFB=90°.
∴∠FAB=30°.
∴FB=
1
2
AB=4.
∴DB=4.
∴AD=AB-DB=4.
∴結(jié)論“AD=2
5
”錯(cuò)誤.

⑤∵點(diǎn)D與點(diǎn)E關(guān)于AC對(duì)稱,
點(diǎn)D與點(diǎn)F關(guān)于BC對(duì)稱,
∴當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),
點(diǎn)E的運(yùn)動(dòng)路徑AM與AB關(guān)于AC對(duì)稱,
點(diǎn)F的運(yùn)動(dòng)路徑NB與AB關(guān)于BC對(duì)稱.
∴EF掃過(guò)的圖形就是圖5中陰影部分.
∴S陰影=2S△ABC
=2×
1
2
AC•BC
=AC•BC
=4×4
3

=16
3

∴EF掃過(guò)的面積為16
3

∴結(jié)論“EF掃過(guò)的面積為16
3
”正確.
故答案為:①、③、⑤.
點(diǎn)評(píng):本題考查了等邊三角形的判定與性質(zhì)、平行線的判定與性質(zhì)、相似三角形的判定與性質(zhì)、切線的判定、軸對(duì)稱的性質(zhì)、含30°角的直角三角形、垂線段最短等知識(shí),綜合性強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x=-2是方程a(x+3)=
1
2
a+x的解,求a2-
1
2
a+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以O(shè)A1為直角邊作等腰Rt△OA1A2,以O(shè)A2為直角邊作等腰Rt△OA2A3,…則OA6的長(zhǎng)度為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的平面直角坐標(biāo)系中,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),A(1,0),B(2,0)是x軸上的兩點(diǎn),則PA+PB的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

分解因式:ax4-9ay2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
27
-
3
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

擲一枚質(zhì)地均勻的硬幣10次,下列說(shuō)法正確的是(  )
A、可能有5次正面朝上
B、必有5次正面朝上
C、擲2次必有1次正面朝上
D、不可能10次正面朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,自變量x的取值范圍是x>1且x≠3的是( 。
A、y=
1-x
x-3
B、y=
x-3
x-1
C、y=
x
x-3
+
1
x-1
D、y=
x-1
x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)y=
4
3
x2+bx+c的圖象與x軸交于A(3,0),B(-1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請(qǐng)判定此時(shí)四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案