【題目】如圖,若m是正數(shù),直線ly=-my軸交于點(diǎn)A;直線ayx+my軸交于點(diǎn)B;拋物線Ly x2+mx的頂點(diǎn)為C,且Lx軸左交點(diǎn)為D

1)若AB12,求m的值,此時(shí)在拋物線的對(duì)稱軸上存在一點(diǎn)P使得△的周長(zhǎng)最小,求點(diǎn)P坐標(biāo);

2)當(dāng)點(diǎn)C在直線l上方時(shí),求點(diǎn)C與直線l距離的最大值;

3)在拋物線L和直線a所圍成的封閉圖形的邊界上,把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為美點(diǎn),分別直接寫(xiě)出m2020m2020.5時(shí)美點(diǎn)的個(gè)數(shù).

【答案】1P(-3,3 );(2)點(diǎn)Cl距離的最大值為1;(3m2020時(shí)美點(diǎn)的個(gè)數(shù)為4042個(gè),m2020.5時(shí)美點(diǎn)的個(gè)數(shù)為1011個(gè)

【解析】

解:(1)求出AB點(diǎn)坐標(biāo),分別為A0,-m)、B 0m),又AB8,而可得到m-(﹣m)=12,即可求出m.又知O、D兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱時(shí),即OP=DP時(shí),OB+OP+PB=OB+DP+PB 當(dāng)B、PD三共線時(shí)△周長(zhǎng)最短,求出P點(diǎn)坐標(biāo)即可.

2)將二次函數(shù)轉(zhuǎn)為頂點(diǎn)式,y=(x+ 2,寫(xiě)出頂點(diǎn)坐標(biāo)C

Cl的距離≤1,據(jù)此可判斷出最大距離.

3)分別求出當(dāng)m2020時(shí),與當(dāng)m2020.5時(shí),利用拋物線解析式與直線解析式求出交點(diǎn)坐標(biāo),求出兩種情況下的的美點(diǎn)個(gè)數(shù)即可,注意分類討論。

解:(1)當(dāng)x0吋,yx+mm

B 0,m),

AB8,而A0,-m),

m-(﹣m)=12,

m6

Lyx2+6x,

L的對(duì)稱軸x=-3,

又知O、D兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,則OP=DP

OB+OP+PB=OB+DP+PB 當(dāng)BP、D三共線時(shí)△周長(zhǎng)最短,此時(shí)點(diǎn)P為直線a與對(duì)稱軸的交點(diǎn),當(dāng)x=-3吋,yx+63

P(-3,3

2y=(x+ 2,

L的頂點(diǎn)C

∵點(diǎn)Cl上方,

Cl的距離≤1,

∴點(diǎn)Cl距離的最大值為1

3)當(dāng)m2020時(shí),共有4042個(gè)美點(diǎn),當(dāng)m2020.5時(shí),共有1011個(gè)美點(diǎn)。

①當(dāng)m2020時(shí),拋物線解析式Lyx2+2020x

直線解析式ayx+2020

聯(lián)立上述兩個(gè)解析式可得:x1=﹣2020,x21

∴可知每一個(gè)整數(shù)x的值 都對(duì)應(yīng)的一個(gè)整數(shù)y值,且﹣20201之間(包括﹣20201)共有2022個(gè)整數(shù);

∵另外要知道所圍成的封閉圖形邊界分兩部分:線段和拋物線,

∴線段和拋物線上各有2022個(gè)整數(shù)點(diǎn)

∴總計(jì)4044個(gè)點(diǎn),

∵這兩段圖象交點(diǎn)有2個(gè)點(diǎn)重復(fù)重復(fù),

∴美點(diǎn)的個(gè)數(shù):404424042(個(gè));

②當(dāng)m2020.5時(shí),

拋物線解析式Lyx2+2020.5x,

直線解析式ayx+2020.5,

聯(lián)立上述兩個(gè)解析式可得:x1=﹣2020.5,x21,

∴當(dāng)x取整數(shù)時(shí),在一次函數(shù)yx+2020.5上,y取不到整數(shù)值,因此在該圖象上美點(diǎn)0,

在二次函數(shù)yx2+2020.5x圖象上,當(dāng)x為偶數(shù)時(shí),函數(shù)值y可取整數(shù),

可知﹣2020.51之間有1010個(gè)偶數(shù),并且在﹣2020.51之間還有整數(shù)0,驗(yàn)證后可知0也符合

條件,因此美點(diǎn)共有1011個(gè).

m2020時(shí)美點(diǎn)的個(gè)數(shù)為4042個(gè),m2020.5時(shí)美點(diǎn)的個(gè)數(shù)為1011個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了預(yù)測(cè)九年級(jí)男生排球30對(duì)墻墊球的情況,從本校九年級(jí)隨機(jī)抽取了n名男生進(jìn)行該項(xiàng)目測(cè)試,并繪制出如下的頻數(shù)分布直方圖,其中從左到右依次分為七個(gè)組(每組含最小值,不含最大值).根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問(wèn)題:

1)求n的值.

2)這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第幾組?

3)若測(cè)試九年級(jí)男生排球30對(duì)墻墊球個(gè)數(shù)不低于10個(gè)為合格,根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)該校九年級(jí)450名男同學(xué)成績(jī)合格的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校綜合實(shí)踐社團(tuán),計(jì)劃利用長(zhǎng)的柵欄材料,一邊靠原有舊墻圍成如圖所示的兩個(gè)矩形試驗(yàn)田,墻的長(zhǎng)度為.

1)能否圍成總面積為的試驗(yàn)田?若能,求出的長(zhǎng)度;若不能,說(shuō)明理由;

2)能否圍成總面積為的試驗(yàn)田?說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

1)如圖,在中,CD為角平分線,,,求證:CD的完美分割線.

2)如圖,中,,CD的完美分割線,且是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).

3)在中,,CD的完美分割線,且為等腰三角形,直接寫(xiě)出∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)GOC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG

2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);

若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P到圖形Ω(可以是線段、三角形、圓或不規(guī)則圖形等)的距離是指:點(diǎn)P與圖形Ω中所有點(diǎn)連接的線段中最短線段的長(zhǎng)度.如圖①中的兩個(gè)虛線段PQ的長(zhǎng)度都表示點(diǎn)P到圖形Ω的距離.

如圖②,在平面直角坐標(biāo)系xOy中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為,點(diǎn)P從原點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向x軸的正方向運(yùn)動(dòng)了t.

1)當(dāng)t=0時(shí),求點(diǎn)PABC的距離;

2)當(dāng)點(diǎn)PABC的距離等于線段AP的長(zhǎng)度時(shí),求t的范圍;

3)當(dāng)點(diǎn)PABC的距離大于時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2+bx+ca≠0)的對(duì)稱軸為x=﹣1,且拋物線經(jīng)過(guò) A1,0),C0,3)兩點(diǎn),與x軸交于點(diǎn)B

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求此時(shí)點(diǎn)M的坐標(biāo);

3)設(shè)點(diǎn)P為拋物線對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了開(kāi)展陽(yáng)光體育運(yùn)動(dòng),計(jì)劃購(gòu)買籃球和足球.已知購(gòu)買20個(gè)籃球和40個(gè)足球的總金額為4600元;購(gòu)買30個(gè)籃球和50個(gè)足球的總金額為6100.

1)每個(gè)籃球、每個(gè)足球的價(jià)格分別為多少元?

2)若該校購(gòu)買籃球和足球共60個(gè),且購(gòu)買籃球的總金額不超過(guò)購(gòu)買足球的總金額,則該校最多可購(gòu)買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,弦CDAB,∠CDB30°,CD6,陰影部分圖形的面積為( )

A. 4πB. 3πC. 2πD. π

查看答案和解析>>

同步練習(xí)冊(cè)答案