【題目】12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);

若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說(shuō)明理由.

【答案】1)見(jiàn)解析;(230°150°, 的長(zhǎng)最大值為,此時(shí)

【解析】

試題分析: (1)延長(zhǎng)ED交AG于點(diǎn)H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運(yùn)用等量代換證明∠AHE=90°即可;

(2)①在旋轉(zhuǎn)過(guò)程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過(guò)程中,當(dāng)∠OAG′=90°時(shí),α=30°,α由90°增大到180°過(guò)程中,當(dāng)∠OAG′=90°時(shí),α=150°;

②當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時(shí),AF′的長(zhǎng)最大,AF′=AO+OF′=+2,此時(shí)α=315°.

試題解析:

(1)如圖1,延長(zhǎng)EDAG于點(diǎn)H,

∵點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),

OA=OD,OAOD,

OG=OE

AOGDOE中,

,

AOGDOE,

∴∠AGO=DEO,

∵∠AGO+GAO=90°,

∴∠GAO+DEO=90°,

∴∠AHE=90°,

DEAG

(2)①在旋轉(zhuǎn)過(guò)程中,OAG′成為直角有兩種情況:

(0°增大到90°過(guò)程中,當(dāng)∠OAG′=90°時(shí),

OA=OD=OG=OG′,

∴在RtOAG′,sinAG′O==,

∴∠AG′O=30°,

OAOD,OAAG′,

ODAG′,

∴∠DOG′=AG′O=30°,

α=30°;

(90°增大到180°過(guò)程中,當(dāng)∠OAG′=90°時(shí),

同理可求∠BOG′=30°

α=180°30°=150°.

綜上所述,當(dāng)∠OAG′=90°時(shí),α=30°150°.

②如圖3,當(dāng)旋轉(zhuǎn)到A.O、F′在一條直線上時(shí),AF′的長(zhǎng)最大,

∵正方形ABCD的邊長(zhǎng)為1

OA=OD=OC=OB=

OG=2OD,

OG′=OG=,

OF′=2,

AF′=AO+OF′=+2,

∵∠COE′=45°,

∴此時(shí)α=315°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程①和②問(wèn)是否存在這樣的n值,使方程①的兩個(gè)實(shí)數(shù)根的差的平方等于方程②的一整數(shù)根?若存在,求出這樣的n值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多項(xiàng)式能被整除,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形,

畫出矩形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后的矩形,并寫出的坐標(biāo)為________,點(diǎn)運(yùn)動(dòng)到點(diǎn)所經(jīng)過(guò)的路徑的長(zhǎng)為________;

若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為________,請(qǐng)畫一條直線平分矩形組成圖形的面積(保留必要的畫圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC分別沿ABAC翻折得到ABD AEC,線段BDAE交于點(diǎn) F,連接BE .

1)如果∠ABC=16,∠ACB=30°,求∠DAE的度數(shù);

2)如果BDCE,求∠CAB 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=(x-1)2-1.

(1)該拋物線的對(duì)稱軸是______________,頂點(diǎn)坐標(biāo)為____________;

(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表并在圖中的直角坐標(biāo)系內(nèi)描點(diǎn)畫出該拋物線;

x

y

(3)根據(jù)圖象,直接寫出當(dāng)y<0時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩位同學(xué)用圍棋子做游戲.如圖所示,現(xiàn)輪到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的個(gè)棋子組成軸對(duì)稱圖形,白棋的個(gè)棋子也成軸對(duì)稱圖形.則下列下子方法不正確的是( ),

A. (3,7);白(5,3) B. (4,7);白(6,2)

C. (2,7);白(5,3) D. (3,7);白(2,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為24的等邊三角形ABC中,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連結(jié)MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連結(jié)HN.則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線段HN長(zhǎng)度的最小值是( 。

A. 12B. 6C. 3D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系的原點(diǎn)是正方形的中心,頂點(diǎn),的坐標(biāo)分別為,把正方形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)得到正方形,則正方形與正方形重疊部分形成的正八邊形的邊長(zhǎng)為(

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案