【題目】二次函數(shù)y=ax2+bx+c (a≠0)(a≠0,a,b,C為常數(shù))的圖象,若關(guān)于x的一元二次方程ax2+bx+c=m有實(shí)數(shù)根,則m的取值范圍是

【答案】m≥﹣2
【解析】解:方程ax2+bx+c+m=0有實(shí)數(shù)根,相當(dāng)于y=ax2+bx+c(a≠0)與直線y=m有交點(diǎn), 又圖象最低點(diǎn)y=﹣2,
∴m≥﹣2,
所以答案是:m≥﹣2.
【考點(diǎn)精析】本題主要考查了拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸、軸分別交于點(diǎn),.點(diǎn)的坐標(biāo)為(,0),點(diǎn) 的坐標(biāo)為(,0).

(1)求的值;

(2)若點(diǎn),)是第二象限內(nèi)的直線上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)過(guò)程中,試寫出的面積的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)探究:當(dāng)運(yùn)動(dòng)到什么位置時(shí),的面積為,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB90°,點(diǎn)D,F分別在AB,AC上,CFCB.連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CE,連接EF

1)求證:△BCD≌△FCE

2)若EF∥CD.求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少要招錄多少名男學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADEDCF,連接AF,BE

(圖1) (圖2) (備用圖)

(1)請(qǐng)判斷:AFBE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;

(2)如圖2,若將條件“兩個(gè)等邊三角形ADEDCF”變?yōu)椤皟蓚(gè)等腰三角形ADEDCF,且EA=ED=FD=FC”,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;

(3)若三角形ADEDCF為一般三角形,且AE=DFED=FC,第(1)問(wèn)中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn),BC=EC,CF⊥BEAB于點(diǎn)F,PEB延長(zhǎng)線上一點(diǎn)下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正確結(jié)論的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠ABD的平分線BEAD于點(diǎn)E,CDB的平分線DFBC于點(diǎn)F.求證:四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,平行四邊形ABOC如圖放置,點(diǎn)A、C的坐標(biāo)分別是(0,4)、(﹣1,0),將此平行四邊形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′.

(1)若拋物線經(jīng)過(guò)點(diǎn)C、A、A′,求此拋物線的解析式;
(2)點(diǎn)M時(shí)第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),問(wèn):當(dāng)點(diǎn)M在何處時(shí),△AMA′的面積最大?最大面積是多少?并求出此時(shí)M的坐標(biāo);
(3)若P為拋物線上一動(dòng)點(diǎn),N為x軸上的一動(dòng)點(diǎn),點(diǎn)Q坐標(biāo)為(1,0),當(dāng)P、N、B、Q構(gòu)成平行四邊形時(shí),求點(diǎn)P的坐標(biāo),當(dāng)這個(gè)平行四邊形為矩形時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,PCD邊上的動(dòng)點(diǎn)(P點(diǎn)不與C、D重合),過(guò)點(diǎn)P作直線與BC的延長(zhǎng)線交于點(diǎn)E,與AD交于點(diǎn)F,且CP=CE,連接DE、BP、BF,設(shè)CP=x,PBF的面積為S1PDE的面積為S2

(1)求證:BPDE;

(2)求S1﹣S2關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;

(3)當(dāng)∠PBF=30°時(shí),求S1﹣S2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案