【題目】△ABC為等腰直角三角形,∠ABC=90°,點(diǎn)D在AB邊上(不與點(diǎn)A,B重合),以CD為腰作等腰直角△CDE,∠DCE=90°.
(1)如圖1,作EF⊥BC于F,求證:△DBC≌△CFE;
(2)在圖1中,連接AE交BC于M,求 的值;
(3)如圖2,過點(diǎn)E作EH⊥CE交CB的延長(zhǎng)線于點(diǎn)H,過點(diǎn)D作DG⊥DC,交AC于點(diǎn)G,連接GH.當(dāng)點(diǎn)D在邊AB上運(yùn)動(dòng)時(shí),式子 的值會(huì)發(fā)生變化嗎?若不變,求出該值;若變化請(qǐng)說明理由.
【答案】
(1)
證明:∵△CDE為等腰直角三角形,∠DCE=90°.
∴CD=CE,∠DCB+∠ECF=90°,
∵EF⊥BC,
∴∠ECF+∠CEF=90°,
∴∠DCB=∠CEF,
在△DBC和△CEF中,
,
∴△DBC≌△CFE
(2)
解:如圖1,
∵△DBC≌△CFE,
∴BD=CF,BC=EF,
∵△ABC為等腰直角三角形,
∴AB=BC,
∴AB=EF,AD=BF,
在△ABM和△EFM中,
,
∴△ABM≌△EFM,
∴BM=FM,
∴BF=2BM,
∴AD=2BM,
∴ 的值為2
(3)
解: 的值不變.
在EH上截取EQ=DG,如圖2,
在△CDG和△CEQ中
,
∴△CDG≌△CEQ,
∴CG=CQ,∠DCG=∠ECQ,
∵∠DCG+∠DCB=45°,
∴∠ECQ+∠DCB=45°,
而∠DCE=90°,
∴∠HCQ=45°,
∴∠HCQ=∠HCG,
在△HCG和△HCQ中,
,
∴△HCG≌△HCQ,
∴HG=HQ,
∴ = = =1.
【解析】(1)根據(jù)等腰直角三角形的性質(zhì)得到CD=CE,再利用等角的余角相等得到∠DCB=∠CEF,然后根據(jù)“AAS”可證明△DBC≌△CFE;(2)由△DBC≌△CFE得到BD=CF,BC=EF,再利用△ABC為等腰直角三角形得到AB=BC,所以AB=EF,AD=BF,接著證明△ABM≌△EFM,得到BM=FM,所以 =2;(3)在EH上截取EQ=DG,如圖2,先證明△CDG≌△CEQ得到CG=CQ,∠DCG=∠ECQ,由于∠DCG+∠DCB=45°,則∠ECQ+∠DCB=45°,所以∠HCQ=45°,再證明△HCG≌△HCQ,則得到HG=HQ,然后可計(jì)算出 =1.
【考點(diǎn)精析】利用等腰直角三角形對(duì)題目進(jìn)行判斷即可得到答案,需要熟知等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,長(zhǎng)沙市某家小型“大學(xué)生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬(wàn)件和12.1萬(wàn)件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.
(1)求該快遞公司投遞總件數(shù)的月平均增長(zhǎng)率;
(2)如果平均每人每月最多可投遞0.6萬(wàn)件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年6月份的快遞投遞任務(wù)?如果不能,請(qǐng)問至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C是直線l上三點(diǎn),線段AB=6cm,且AB= AC,則BC=( )
A.6cm
B.12cm
C.18cm
D.6cm或18cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是我市四個(gè)景區(qū)今年2月份某天6時(shí)的氣溫,其中氣溫最低的景區(qū)是( )
景區(qū) | 潛山公園 | 陸水湖 | 隱水洞 | 三湖連江 |
氣溫 | ﹣1℃ | 0℃ | ﹣2℃ | 2℃ |
A.潛山公園
B.陸水湖
C.隱水洞
D.三湖連江
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是線段AB上一點(diǎn),D是線段CB的中點(diǎn),已知圖中所有的線段的長(zhǎng)度之和為23,線段AC的長(zhǎng)度與線段CB的長(zhǎng)度都是正整數(shù),則線段AC長(zhǎng) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=40°,AB的垂直平分線MN交AC于D點(diǎn),則∠DBC的度數(shù)是( )
A.20°
B.30°
C.40°
D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)尋寶游戲的尋寶通道如圖1所示,通道由在同一平面內(nèi)的AB,BC,CA,OA,OB,OC組成.為記錄尋寶者的行進(jìn)路線,在BC的中點(diǎn)M處放置了一臺(tái)定位儀器.設(shè)尋寶者行進(jìn)的時(shí)間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則尋寶者的行進(jìn)路線可能為( )
A.A→O→B B.B→A→C C.B→O→C D.C→B→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是( )
A.5 B.6 C.7 D.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com