【題目】已知,四邊形ABCD是正方形,∠MAN=90°,將∠MAN繞頂點A旋轉(zhuǎn),旋轉(zhuǎn)角為∠DAM(0°<∠DAM<45°),AM交CD于點E,∠MAN的平分線與CB交于點G
(1)證明:如圖1,連接GE.求證:GE=DE+BG;
(2)探究:如圖2,設(shè)AN交CB的延長線于點F,直線EF分別交AG,AB于點P,H.探究GH與AE的位置關(guān)系,并證明你的結(jié)論;
(3)應(yīng)用:在圖2中,若正方形的邊長為6,BG=2,求GH的長.
【答案】(1)見解析;(2)GH∥AE,證明見解析;(3)
【解析】
(1)延長CB交AN于點F,通過證△DAE≌△BAF和△EAG≌△FAG從而證得結(jié)論;(2)首先證明△PAH≌△PFG .則PH=PG ,從而∠PGH=45°. 又因為AP=EP,∠APE=90°. 所以∠PAE=45°.證得∠PGH=∠PAE,再根據(jù)平行線的判定得到GH∥AE;(3)設(shè)DE=,則CG=4,CE=6-,GE=GF=2+.在Rt△CEG中通過勾股定理求出x的值.再證△FBH∽△FCE,根據(jù)相似的性質(zhì)即可求出BH的長,再在Rt△GBH中通過勾股定理求出GH的長.
(1)證明:延長CB交AN于點F,
∵ABCD是正方形,∴AD=AB,∠DAB=∠D=∠ABF=90°.
∵∠MAN=90°,∴∠DAB=∠MAN.
∴∠DAB-∠EAB=∠MAN-∠EAB即:∠DAE=∠BAF.
∴△DAE≌△BAF.∴AE=AF.
又AG=AG,∠EAG=∠FAG.
∴△EAG≌△FAG .∴GE=GF.
而GF=BG+BF=BG+DE
∴GE=BG+DE.
(2)解: GH∥AE,證明如下:
∵AE=AF,AG平分∠EAF∴AG⊥EF,EP=FP.
∴∠APH=∠FPG=∠APE=90°,AP=EF=EP=FP
∴∠PFG+∠PGF=90又∵∠ABG=90°,∴∠PAH+∠PGF=90°.∴∠PAH=∠PFG.
∴△PAH≌△PFG .∴PH=PG .∴∠PGH=45°.
∵AP=EP,∠APE=90°. ∴∠PAE=45°.
∴∠PGH=∠PAE.∴GH∥AE.
(3)連接GE,由(1)知GE=GF,DE=BF.
設(shè)DE=,因為正方形邊長為6,BG=2,
∴CG=4,CE=6-,GE=GF=2+.
在Rt△CEG中,CE2+CG2=GE2,
∴
解得,即:DE=BF=3 .
∴CE=6-3=3,CF=6+3=9 .
∵BH∥CE ∴△FBH∽△FCE ∴.
∴BH=1
∵∠GBH=90° ∴GH= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,,點,分別是邊,上的動點,且,點關(guān)于的對稱點恰好落在的內(nèi)角平分線上,則長為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、F分別在線段BC、AB上,∠EFB=60°,DC=EF.
(1)求證:四邊形EFCD是平行四邊形;
(2)若BF=EF,求證:AE=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年4月是我國第32個愛國衛(wèi)生月.某校九年級通過網(wǎng)課舉行了主題為“防疫有我,愛衛(wèi)同行”的知識競賽活動.為了解全年級500名學(xué)生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學(xué)生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).請根據(jù)圖表信息解答以下問題:
(1)本次調(diào)查一共隨機抽取了____個參賽學(xué)生的成績;
(2)表1中a=__;
(3)所抽取的參賽學(xué)生的成績的中位數(shù)落在的“組別”是__;
(4)統(tǒng)計圖中B組所占的百分比是_______;
(5)請你估計,該校九年級競賽成績達到80分以上(含80分)的學(xué)生人數(shù).
表1 知識競賽成績分組統(tǒng)計表
組別 | 分?jǐn)?shù)/分 | 頻數(shù) |
A | 60≤x<70 | a |
B | 70≤x<80 | 10 |
C | 80≤x<90 | 14 |
D | 90≤x<100 | 18 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是函數(shù)上兩點,為一動點,作軸,軸,下列說法正確的是( )
①;②;③若,則平分;④若,則
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,從而對任意正整數(shù)n,我們可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值為( )
A.0B.1C.﹣1D.i
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商購進某種商品,當(dāng)購進量在20千克~50千克之間(含20千克和50千克)時,每千克進價是5元;當(dāng)購進量超過50千克時,每千克進價是4元.此種商品的日銷售量y(千克)受銷售價x(元/千克)的影響較大,該經(jīng)銷商試銷一周后獲得如下數(shù)據(jù):
x(元/千克) | 5 | 5.5 | 6 | 6.5 | 7 |
y(千克) | 90 | 75 | 60 | 45 | 30 |
解答下列問題:
(1)求出y關(guān)于x的一次函數(shù)表達式:
(2)若每天購進的商品能夠全部銷售完,且當(dāng)日銷售價不變,日銷售利潤為w元,那么銷售價定為多少時,該經(jīng)銷商銷售此種商品的當(dāng)日利潤最大?最大利潤為多少元?此時購進量應(yīng)為多少千克?(注:當(dāng)日利潤=(銷售價-進貨價)×日銷售量).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏從地出發(fā)向地行走,同時小聰從地出發(fā)向地行走,如圖,相交于點的兩條線段分別表示小敏、小聰離地的距離與已用時間之間的關(guān) 系,則_______時,小敏、小聰兩人相距.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com