如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2 m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9 m,高度為2.43 m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18 m.

(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫(xiě)出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由.
(1) y=- (x-6)2+2.6   (2) 球能過(guò)網(wǎng),會(huì)出界,理由見(jiàn)解析

解:(1)∵h(yuǎn)=2.6,球從O點(diǎn)正上方2 m的A處發(fā)出,
∴y=a(x-6)2+h過(guò)(0,2)點(diǎn),
∴2=a(0-6)2+2.6,解得:a=-
所以y與x的關(guān)系式為:y=- (x-6)2+2.6.
(2)當(dāng)x=9時(shí),y=- (x-6)2+2.6=2.45>2.43,所以球能過(guò)網(wǎng);
當(dāng)y=0時(shí),- (x-6)2+2.6=0,
解得:x1=6+2 >18,x2=6-2 (舍去),
所以會(huì)出界.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線經(jīng)過(guò)A、C兩點(diǎn).
(1)求拋物線的解析式及其頂點(diǎn)坐標(biāo);
(2)如圖①,點(diǎn)P是拋物線上位于x軸下方的一點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于拋物線的對(duì)稱軸對(duì)稱,過(guò)點(diǎn)P、Q分別向x軸作垂線,垂足為點(diǎn)D、E,記矩形DPQE的周長(zhǎng)為d,求d的最大值,并求出使d最大值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,點(diǎn)M是拋物線上位于直線AC下方的一點(diǎn),過(guò)點(diǎn)M作MF⊥AC于點(diǎn)F,連接MC,作MN∥BC交直線AC于點(diǎn)N,若MN將△MFC的面積分成2:3兩部分,請(qǐng)確定M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列關(guān)系式錯(cuò)誤的是()
A.a(chǎn)>0B.c>0C.b2-4ac>0D.a(chǎn)+b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x+4x+5交x軸于A、B(以A左B右)兩點(diǎn),交y軸于點(diǎn)C.

(1)求直線BC的解析式;
(2)點(diǎn)P為拋物線第一象限函數(shù)圖象上一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為m,△PBC的面積為S,求S與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,連接AP,拋物線上是否存在這樣的點(diǎn)P,使得線段PA被BC平分,如果不存在,請(qǐng)說(shuō)明理由;如果存在,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若關(guān)于x的函數(shù)y=kx2+2x﹣1與x軸僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值為      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:M、N兩點(diǎn)關(guān)于y軸對(duì)稱,且點(diǎn)M在雙曲線上,點(diǎn)N在直線上,設(shè)點(diǎn)M的坐標(biāo)為,則二次函數(shù)(      )
A.有最大值,最大值為B.有最大值,最大值為
C.有最小值,最小值為D.有最小值,最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

教練對(duì)小明推鉛球的錄像進(jìn)行技術(shù)分析,發(fā)現(xiàn)鉛球行進(jìn)高度y(m)與水平距離x(m)之間的關(guān)系為y=- (x-4)2+3,由此可知鉛球推出的距離是________m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過(guò)B、C兩點(diǎn).

(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=x2-2x+6的最小值是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案