如圖,在菱形ABCD中,∠B=60°,點(diǎn)E、F分別從點(diǎn)B、D出發(fā)以同樣的速度沿邊BC、DC向點(diǎn)C運(yùn)動(dòng).給出以下四個(gè)結(jié)論:
①AE=AF;
②∠CEF=∠CFE;
③當(dāng)點(diǎn)E,F(xiàn)分別為邊BC,DC的中點(diǎn)時(shí),△AEF是等邊三角形;
④當(dāng)點(diǎn)E,F(xiàn)分別為邊BC,DC的中點(diǎn)時(shí),△AEF的面積最大.
上述結(jié)論中正確的序號(hào)有________.(把你認(rèn)為正確的序號(hào)都填上)

①②③
分析:根據(jù)菱形的性質(zhì)對(duì)各個(gè)結(jié)論進(jìn)行驗(yàn)證從而得到正確的序號(hào).
解答:解:∵點(diǎn)E、F分別從點(diǎn)B、D出發(fā)以同樣的速度沿邊BC、DC向點(diǎn)C運(yùn)動(dòng),
∴BE=DF,
∵AB=AD,∠B=∠D,
∴△ABE≌△ADF,
∴AE=AF,①正確;
∴CE=CF,
∴∠CEF=∠CFE,②正確;
∵在菱形ABCD中,∠B=60°,
∴AB=BC,
∴△ABC是等邊三角形,
∴當(dāng)點(diǎn)E,F(xiàn)分別為邊BC,DC的中點(diǎn)時(shí),BE=AB,DF=AD,
∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,
∴∠EAF=120°-30°-30°=60°,
∴△AEF是等邊三角形,③正確;
∵△AEF的面積=菱形ABCD的面積-△ABE的面積-△ADF的面積-△CEF的面積=AB2-BE•AB××2-××(AB-BE)2=-BE2+AB2
∴△AEF的面積是BE的二次函數(shù),
∴當(dāng)BE=0時(shí),△AEF的面積最大,④錯(cuò)誤.
故正確的序號(hào)有①②③.
點(diǎn)評(píng):本題考查了菱形的性質(zhì)、全等三角形的判定和等邊三角形的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長(zhǎng)為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點(diǎn),P為對(duì)角線BD上任意一點(diǎn),AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時(shí),四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點(diǎn)E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案