【題目】如圖,在平面直角坐標(biāo)系中有一正方形AOBC,反比例函數(shù) 經(jīng)過正方形AOBC對角線的交點,半徑為(4﹣2 )的圓內(nèi)切于△ABC,則k的值為 .
【答案】4
【解析】解:設(shè)正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;
設(shè)圓心為Q,切點為H、E,連接QH、QE.
∵在正方形AOBC中,反比例函數(shù) 經(jīng)過正方形AOBC對角線的交點,
∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,
QH⊥AC,QE⊥BC,∠ACB=90°,
∴四邊形HQEC是正方形,
∵半徑為(4﹣2 )的圓內(nèi)切于△ABC,
∴DO=CD,
∵HQ2+HC2=QC2 ,
∴2HQ2=QC2=2×(4﹣2 )2 ,
∴QC2=48﹣32 =(4 ﹣4)2 ,
∴QC=4 ﹣4,
∴CD=4 ﹣4+(4﹣2 )=2 ,
∴DO=2 ,
∵NO2+DN2=DO2=(2 )2=8,
∴2NO2=8,
∴NO2=4,
∴DN×NO=4,
即:xy=k=4.
所以答案是:4.
【考點精析】根據(jù)題目的已知條件,利用正方形的性質(zhì)和三角形的內(nèi)切圓與內(nèi)心的相關(guān)知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是△ABC內(nèi)一點,∠A=80°,BO、CO分別是∠ABC和∠ACB的角平分線,則∠BOC等于( 。
A. 140° B. 120° C. 130° D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式的化簡后,遇到了這樣一個需要化簡的式子:.該如何化簡呢?思考后,他發(fā)現(xiàn)3+2=1+2+()2=(1+)2.于是==1+.善于思考的小明繼續(xù)深入探索;當(dāng)a+b=(m+n)2時(其中a,b,m,n均為正整數(shù)),則a+b=m2+2mn+2n2.此時,a=m2+2n2,b=2mn,于是,=m+n.請你仿照小明的方法探索并解決下列問題:
(1)設(shè)a,b,m,n均為正整數(shù)且=m+n,用含m,n的式子分別表示a,b時,結(jié)果是a= ,b= ;
(2)利用(1)中的結(jié)論,選擇一組正整數(shù)填空:= + ;
(3)化簡:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有2個,若從中隨機(jī)摸出一個球,這個球是白球的概率為 .
(1)求袋子中白球的個數(shù);(請通過列式或列方程解答)
(2)隨機(jī)摸出一個球后,放回并攪勻,再隨機(jī)摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)﹣18×(﹣2)÷3
(2)(﹣)×(﹣90)÷
(3)﹣2.5÷×(﹣);
(4)(﹣10)2﹣[16+(﹣3)2]
(5)(﹣+2)÷
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩輛汽車先后從A地出發(fā)到B地,甲車出發(fā)1小時后,乙車才出發(fā),如圖所示的l1和l2表示甲,乙兩車相對于出發(fā)地的距離y(km)與追趕時間x(h)之間的關(guān)系:
(1)哪條線表示乙車離出發(fā)地的距離y與追趕時間x之間的關(guān)系?
(2)甲,乙兩車的速度分別是多少?
(3)試分別確定甲,乙兩車相對于出發(fā)地的距離y(km)與追趕時間x(h)之間的關(guān)系式;
(4)乙車能在1.5小時內(nèi)追上甲車嗎?若能,說明理由;若不能,求乙車出發(fā)幾小時才能追上甲?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.
(1)求梯子底端B外移距離BD的長度;
(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABE中,∠A=105°,AE的垂直平分線MN交BE于點C,且AB+BC=BE,則∠B的度數(shù)是( )
A. 45° B. 60° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,點A為 中點,BD為直徑,過A作AP∥BC交DB的延長線于點P.
(1)求證:PA是⊙O的切線;
(2)若 ,AB=6,求sin∠ABD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com