如圖,點(diǎn)P是直線l:y=-2x-2上的點(diǎn),過點(diǎn)P的另一條直線m交拋物線y=x2于A、B兩點(diǎn).
(1)若直線m的解析式為y=-x+,求A、B兩點(diǎn)的坐標(biāo);
(2)①若點(diǎn)P的坐標(biāo)為(-2,t),當(dāng)PA=AB時(shí),請直接寫出點(diǎn)A的坐標(biāo);
②試證明:對于直線l上任意給定的一點(diǎn)P,在拋物線上都能找到點(diǎn)A,使得PA=AB成立.
(3)設(shè)直線l交y軸于點(diǎn)C,若△AOB的外心在邊AB上,且∠BPC=∠OCP,求點(diǎn)P的坐標(biāo).
解:(1)依題意,得 解得, ∴A(,),B(1,1). (2)①A1(-1,1),A2(-3,9). 、谶^點(diǎn)P、B分別作過點(diǎn)A且平行于軸的直線的垂線,垂足分別為G、H. 設(shè)P(,),A(,),∵PA=PB,∴△PAG≌△BAH, ∴AG=AH,PG=BH,∴B(,), 將點(diǎn)B坐標(biāo)代入拋物線,得, ∵Δ= ∴無論為何值時(shí),關(guān)于的方程總有兩個(gè)不等的實(shí)數(shù)解,即對于任意給定的點(diǎn)P,拋物線上總能找到兩個(gè)滿足條件的點(diǎn)A. (3)設(shè)直線:交y軸于D,設(shè)A(,),B(,). 過A、B兩點(diǎn)分別作AG、BH垂直軸于G、H. ∵△AOB的外心在AB上,∴∠AOB=90°, 由△AGO∽△OHB,得,∴. 聯(lián)立得,依題意,得、是方程的兩根,∴,∴,即D(0,1). ∵∠BPC=∠OCP,∴DP=DC=3.P 設(shè)P(,),過點(diǎn)P作PQ⊥軸于Q,在Rt△PDQ中,, ∴.∴(舍去),,∴P(,). ∵PN平分∠MNQ,∴PT=NT,∴. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
m-1 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
6 |
x |
A、4
| ||
B、5 | ||
C、2
| ||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com