【題目】如圖,已知在平面直角坐標(biāo)系xOy中,RtOAB的直角頂點(diǎn)Bx軸的正半軸上,點(diǎn)A在第一象限,反比例函數(shù)yx0)的圖象經(jīng)過(guò)OA的中點(diǎn)C.交AB于點(diǎn)D,連結(jié)CD.若ACD的面積是2,則k的值是_____

【答案】

【解析】

作輔助線,構(gòu)建直角三角形,利用反比例函數(shù)k的幾何意義得到SOCE=SOBD=k,根據(jù)OA的中點(diǎn)C,利用△OCE∽△OAB得到面積比為14,代入可得結(jié)論.

解:連接OD,過(guò)CCEAB,交x軸于E,

∵∠ABO90°,反比例函數(shù)yx0)的圖象經(jīng)過(guò)OA的中點(diǎn)C,

SCOESBOD,SACDSOCD2

CEAB,

∴△OCE∽△OAB,

,

4SOCESOAB,

k2+2+k

k,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校擬購(gòu)進(jìn)一批手動(dòng)噴淋消毒設(shè)備,已知1個(gè)A型噴霧器和2個(gè)B型噴霧器共需90元;2個(gè)A型噴霧器和3個(gè)B型噴霧器共需165元.

1)問(wèn)一個(gè)A型噴霧器和一個(gè)B型噴霧器的單價(jià)各是多少元?

2)學(xué)校決定購(gòu)進(jìn)兩種型號(hào)的噴霧器共60個(gè),并且要求B型噴霧器的數(shù)量不能多于A型噴霧器的4倍,請(qǐng)你設(shè)計(jì)出最為省錢的購(gòu)買方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是∠BAC的平分線,DE平行ABAC于點(diǎn)E,DF平行ACAB于點(diǎn)F,延長(zhǎng)FEBC的延長(zhǎng)線于點(diǎn)G

求證:

1AGDG;

2)∠GAC=∠B

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)折矩形紙片使重合,得到折痕,再把紙片展平.上一點(diǎn),將沿折疊,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在上.若,則的長(zhǎng)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+x+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)C 03)與x軸的另一交點(diǎn)為點(diǎn)B,點(diǎn)M是直線BC上一動(dòng)點(diǎn),過(guò)點(diǎn)MMPy軸,交拋物線于點(diǎn)P

1)求該拋物線的解析式;

2)在拋物線上是否存在一點(diǎn)Q,使得△QCO是等邊三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)以M為圓心,MP為半徑作⊙M,當(dāng)⊙M與坐標(biāo)軸相切時(shí),求出⊙M的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c(c0)的頂點(diǎn)為D,與y軸的交點(diǎn)為C.過(guò)點(diǎn)C的直線CA與拋物線交于另一點(diǎn)A(點(diǎn)A在對(duì)稱軸左側(cè)),點(diǎn)BAC的延長(zhǎng)線上,連結(jié)OA,OB,DADB

(1)如圖1,當(dāng)ACx軸時(shí),

①已知點(diǎn)A的坐標(biāo)是(﹣21),求拋物線的解析式;

②若四邊形AOBD是平行四邊形,求證:b24c

(2)如圖2,若b=﹣2,是否存在這樣的點(diǎn)A,使四邊形AOBD是平行四邊形?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)研究性學(xué)習(xí)中,小兵將兩個(gè)全等的直角三角形紙片ABCDEF拼在一起,使點(diǎn)A與點(diǎn)F重合,點(diǎn)C與點(diǎn)D重合(如圖1),其中∠ACB=∠DFE90°,BCEF3cm,ACDF4cm,并進(jìn)行如下研究活動(dòng).

活動(dòng)一:將圖1中的紙片DEF沿AC方向平移,連結(jié)AE,BD(如圖2),當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)停止平移.

(思考)圖2中的四邊形ABDE是平行四邊形嗎?請(qǐng)說(shuō)明理由.

(發(fā)現(xiàn))當(dāng)紙片DEF平移到某一位置時(shí),小兵發(fā)現(xiàn)四邊形ABDE為矩形(如圖3).求AF的長(zhǎng).

活動(dòng)二:在圖3中,取AD的中點(diǎn)O,再將紙片DEF繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)α度(0≤α≤90),連結(jié)OB,OE(如圖4).

(探究)當(dāng)EF平分∠AEO時(shí),探究OFBD的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10/斤的某種水果,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為8.1/斤,并且兩次降價(jià)的百分率相同.

1)求該種水果每次降價(jià)的百分率;

2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示.已知該種水果的進(jìn)價(jià)為4.1/斤,設(shè)銷售該水果第x(天)的利潤(rùn)為y(元),求yx1≤x≤14)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷售利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市實(shí)施城鄉(xiāng)生活垃圾分類管理,推進(jìn)生態(tài)文明建設(shè)為增強(qiáng)學(xué)生的環(huán)保意識(shí),隨機(jī)抽取名學(xué)生,對(duì)他們的垃圾分類投放情況進(jìn)行調(diào)查,這名學(xué)生分別標(biāo)記為,,,,,,,,其中“√”表示投放正確,“×”表示投放錯(cuò)誤,統(tǒng)計(jì)情況如下表.

學(xué)生

垃圾類別

廚余垃圾

可回收垃圾

×

×

×

有害垃圾

×

×

×

×

其他垃圾

×

×

×

1)求名學(xué)生中至少有三類垃圾投放正確的概率;

2)為進(jìn)一步了解垃圾分類投放情況,現(xiàn)從名學(xué)生里“有害垃圾”投放錯(cuò)誤的學(xué)生中隨機(jī)抽取兩人接受采訪,試用標(biāo)記的字母列舉所有可能抽取的結(jié)果,并求出剛好抽到、兩位學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案