【題目】為調(diào)查廣西北部灣四市市民上班時最常用的交通工具的情況,隨機抽取了四市部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車,E:其他”五個選項中選擇最常用的一項,將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結(jié)合統(tǒng)計圖回答下列問題:

(1)在這次調(diào)查中,一共調(diào)查了 名市民,扇形統(tǒng)計圖中,C組對應(yīng)的扇形圓心角是 °;

(2)請補全條形統(tǒng)計圖;

(3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨機選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請用畫樹狀圖或列表法求解.

【答案】(1)2000,108;(2)作圖見解析;(3)

【解析】

試題分析:(1)根據(jù)B組的人數(shù)以及百分比,即可得到被調(diào)查的人數(shù),進(jìn)而得出C組的人數(shù),再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進(jìn)行計算即可;

(2)根據(jù)C組的人數(shù),補全條形統(tǒng)計圖;

(3)根據(jù)甲、乙兩人上班時從A、B、C、D四種交通工具中隨機選擇一種畫樹狀圖或列表,即可運用概率公式得到甲、乙兩人恰好選擇同一種交通工具上班的概率.

試題解析:(1)被調(diào)查的人數(shù)為:800÷40%=2000(人),C組的人數(shù)為:2000﹣100﹣800﹣200﹣300=600(人),C組對應(yīng)的扇形圓心角度數(shù)為:×360°=108°,故答案為:2000,108;

(2)條形統(tǒng)計圖如下:

(3)畫樹狀圖得:

共有16種等可能的結(jié)果,甲、乙兩人選擇同一種交通工具的有4種情況,甲、乙兩人選擇同一種交通工具上班的概率為:=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,適宜采用全面調(diào)查(普查)方式的是  

A. 調(diào)查巴南區(qū)市民對巴南區(qū)創(chuàng)建國家食品安全示范城市的了解情況

B. 調(diào)查央視節(jié)目《國家寶藏》的收視率

C. 調(diào)查我校某班學(xué)生喜歡上數(shù)學(xué)課的情況

D. 調(diào)查學(xué)校所有電子白板的使用壽命

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

某校初二年級的同學(xué)乘坐大巴車去北京展覽館參觀“砥礪奮進(jìn)的五年”大型成就展,北京展覽館距離該校12千米,1號車出發(fā)3分鐘后,2號車才出發(fā),結(jié)果兩車同時到達(dá),已知2號車的平均速度是1號車的平均速度的1.2倍,求2號車的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y(x0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD3

(1)設(shè)點A的坐標(biāo)為(44)則點C的坐標(biāo)為   ;

(2)若點D的坐標(biāo)為(4,n)

求反比例函數(shù)y的表達(dá)式;

求經(jīng)過C,D兩點的直線所對應(yīng)的函數(shù)解析式;

(3)(2)的條件下,設(shè)點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個幾何體的小正方體的個數(shù)至少為( )

A. 5 B. 6

C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,RtABC中,∠ACB90°,AC5,BC12,點D在邊AB上,以AD為直徑的O,與邊BC有公共點E,則AD的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,CO上一點,DBC延長線一點,且BCCD,CEAD于點E

1)求證:直線ECO的切線;

2)設(shè)BEO交于點F,AF的延長線與EC交于點P,已知∠PCF=∠CBFPC5,PF3.求:cosPEF的值.

查看答案和解析>>

同步練習(xí)冊答案