年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
某賽季甲、乙兩名籃球運(yùn)動(dòng)員12場比賽得分情況用圖表示如下:對(duì)這兩名運(yùn)動(dòng)員的成績進(jìn)行比較,下列四個(gè)結(jié)論中,不正確的是( )
A.甲運(yùn)動(dòng)員的得分平均數(shù)大于乙運(yùn)動(dòng)員的得分平均數(shù)
B.甲運(yùn)動(dòng)員得分的的中位數(shù)小于乙運(yùn)動(dòng)員得分的的中位數(shù)
C.甲運(yùn)動(dòng)員得分的極差大于乙運(yùn)動(dòng)員得分的極差
D.乙運(yùn)動(dòng)員的成績比甲運(yùn)動(dòng)員的成績穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,兩個(gè)同心圓的圓心是O,大圓的半徑為10,小圓的半徑為6,AD是大圓的直徑.大圓的弦AB,BE分別與小圓相切于點(diǎn)C,F.AD,BE相交于點(diǎn)G,連接BD.
(1)求BD 的長;
(2)求∠ABE+2∠D的度數(shù);
(3)求的值.(改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=x2﹣x與x軸交于O,A兩點(diǎn).半徑為1的動(dòng)圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動(dòng);半徑為2的動(dòng)圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動(dòng).兩圓同時(shí)出發(fā),且移動(dòng)速度相等,當(dāng)運(yùn)動(dòng)到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的橫坐標(biāo)為t.若⊙P與⊙Q相離,則t的取值范圍是_____ ____ .(根據(jù)2013金華模擬改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(-4,0),B點(diǎn)坐標(biāo)為(1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P與y軸的負(fù)半軸交于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)M為(1)中拋物線的頂點(diǎn),試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論;
(3)在第二象限中是否存在的一點(diǎn)Q,使得以A,O,Q為頂點(diǎn)的三角形與△OBC相似。若存在,請(qǐng)求出所有滿足的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由。(根據(jù)2007煙臺(tái)試卷改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于二次函數(shù),以下結(jié)論:① 拋物線交軸有兩個(gè)不同的交點(diǎn);②不論k取何值,拋物線總是經(jīng)過一個(gè)定點(diǎn);③設(shè)拋物線交軸于A、B兩點(diǎn),若AB=1,則k=9;;④ 拋物線的頂點(diǎn)在圖像上.其中正確的序號(hào)是( )
A.①②③④ B.②③ C.②④ D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有兩個(gè)圓,⊙的半徑等于地球的半徑,⊙的半徑等于一個(gè)籃球的半徑,現(xiàn)將兩個(gè)圓都向外膨脹(相當(dāng)于作同心圓),使周長都增加1米,則半徑伸長的較多的圓是( )
A、⊙ B、⊙ C、兩圓的半徑伸長是相同的 D、無法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com