【題目】如圖,正方形ABCD的邊長為1,E、F分別是BC、CD上的點,且△AEF是等邊三角形,則BE的長為( )
A. B. C. D.
【答案】A
【解析】試題分析:由于四邊形ABCD是正方形,△AEF是等邊三角形,所以首先根據(jù)已知條件可以證明△ABE≌△ADF,再根據(jù)全等三角形的性質(zhì)得到BE=DF,設(shè)BE=x,那么DF=x,CE=CF=1-x,那么在Rt△ABE和Rt△ADF利用勾股定理可以列出關(guān)于x的方程,解方程即可求出BE.
解:∵四邊形ABCD是正方形,
∴∠B=∠D=90°,AB=AD,
∵△AEF是等邊三角形,
∴AE=EF=AF,
在Rt△ABE和Rt△ADF中
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
設(shè)BE=x,那么DF=x,CE=CF=1x,
在Rt△ABE中,AE2=AB2+BE2,
在Rt△CEF中,FE2=CF2+CE2,
∴AB2+BE2=CF2+CE2,
∴x2+1=2(1x)2,
∴x24x+1=0,
∴x=2±,而x<1,
∴x=2,
即BE的長為2.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若點P(a,b)在函數(shù)y=的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=的一個“派生函數(shù)”.例如:點(2, )在函數(shù)y=的圖象上,則函數(shù)y=2x2+ 稱為函數(shù)y=的一個“派生函數(shù)”.現(xiàn)給出以下兩個命題:
(1)存在函數(shù)y=的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)
(2)函數(shù)y=的所有“派生函數(shù)”的圖象都經(jīng)過同一點,下列判斷正確的是( )
A. 命題(1)與命題(2)都是真命題
B. 命題(1)與命題(2)都是假命題
C. 命題(1)是假命題,命題(2)是真命題
D. 命題(1)是真命題,命題(2)是假命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下問題,不適合用普查的是( 。
A. 了解一批燈泡的使用壽命 B. 中學(xué)生參加高考時的體檢
C. 了解全校學(xué)生的課外讀書時間 D. 旅客上飛機(jī)前的安檢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要調(diào)查下列問題,你認(rèn)為哪些適合抽樣調(diào)查( )
①市場上某種食品的某種添加劑的含量是否符合國家標(biāo)準(zhǔn)
②檢測某地區(qū)空氣質(zhì)量
③調(diào)查全市中學(xué)生一天的學(xué)習(xí)時間.
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式,屬于二元一次方程的是______________;
① xy +2x -y =7 ;② 4x+1=x-y ;③+y=5 ;④ x=y ;⑤ x2-y2=2
⑥ 6x-2y ;⑦ x+y+z=1 ;⑧ y(y-1)=2y2-y2+x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人只帶了2元和5元這兩種貨幣,他要買一件27元的商品,而商店沒有零錢找,他想恰好付27元,那么他的付款方式有________種.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】貴州FAST望遠(yuǎn)鏡是目前世界第一大單口徑射電望遠(yuǎn)鏡,反射面總面積約250000m2 , 這個數(shù)據(jù)用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com