如圖,是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的邊長(zhǎng)分別是3、5、2、3,則最大正方形E的面積是___________________ 。

 

 

13

【解析】

試題分析:設(shè)中間兩個(gè)正方形的邊長(zhǎng)分別為x、y,最大正方形E的邊長(zhǎng)為z,則由勾股定理得:

x2=32+52=34;

y2=22+32=13;

z2=x2+y2=47;

即最大正方形E的邊長(zhǎng)為:,所以面積為:z2=47

考點(diǎn):勾股定理

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省無錫市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

sin30°的值是 ( )

A.1 B. C. D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省無錫市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

若關(guān)于的方程的兩根互為倒數(shù),則 .

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市邗江區(qū)八年級(jí)上學(xué)期期中測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

(10分)如圖,在△ABC中,AB=13,BC=10, BC邊上的中線AD=12.

(1)AD平分∠BAC嗎?請(qǐng)說明理由.

(2)求:△ABC的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市邗江區(qū)八年級(jí)上學(xué)期期中測(cè)試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,長(zhǎng)方體的底面邊長(zhǎng)分別為1cm 和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開始經(jīng)過4個(gè)側(cè)面纏繞一圈到達(dá)點(diǎn)B,那么所用細(xì)線最短需__________cm.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市邗江區(qū)八年級(jí)上學(xué)期期中測(cè)試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,∠MON內(nèi)有一點(diǎn)P,P點(diǎn)關(guān)于OM的軸對(duì)稱點(diǎn)是G,P點(diǎn)關(guān)于ON的軸對(duì)稱點(diǎn)是H, GH分別交OM、ON于A、B點(diǎn),若,則 ( )

A. B. C. D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市邗江區(qū)九年級(jí)上學(xué)期期中測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD.

(1)如圖1,若點(diǎn)D與圓心O重合,AC=2,求⊙O的半徑r;

(2)如圖2,若點(diǎn)D與圓心O不重合,∠BAC=25°,求∠DCA的度數(shù).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市邗江區(qū)九年級(jí)上學(xué)期期中測(cè)試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,已知AB是△ABC外接圓的直徑,∠A=35°,則∠B的度數(shù)是 .

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省宜興市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),P是反比例函數(shù)y=(x>0)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與坐標(biāo)軸分別交于點(diǎn)A、B.

(1)求證:線段AB為⊙P的直徑;

(2)求△AOB的面積;

(3)如圖2,Q是反比例函數(shù)y=(x>0)圖象上異于點(diǎn)P的另一點(diǎn),以Q為圓心,QO為半徑畫圓與坐標(biāo)軸分別交于點(diǎn)C、D.求證:DO•OC=BO•OA.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案