【題目】金堂縣在創(chuàng)建國家衛(wèi)生城市的過程中,經(jīng)調(diào)查發(fā)現(xiàn)居民用水量居高不下,為了鼓勵居民節(jié)約用水,擬實行新的收費標準.若每月用水量不超過12噸,則每噸按政府補貼優(yōu)惠價元收費;若每月用水量超過12噸,則超過部分每噸按市場指導(dǎo)價元收費.毛毛家家10月份用水22噸,交水費59元;11月份用水17噸,交水費41.5元.
(1)求每噸水的政府補貼優(yōu)惠價和市場指導(dǎo)價分別是多少元?
(2)設(shè)每月用水量為噸,應(yīng)交水費為元,請寫出與之間的函數(shù)關(guān)系式;
(3)小明家12月份用水25噸,則他家應(yīng)交水費多少元?
【答案】(1)每噸水的政府補貼優(yōu)惠價和市場指導(dǎo)價分別是2元、3.5元;(2);(3)69.5
【解析】
(1)根據(jù)題意列出方程組,求解此方程組即可;
(2)根據(jù)用水量分別求出在兩個不同的范圍內(nèi)y與x之間的函數(shù)關(guān)系,注意自變量的取值范圍;
(3)根據(jù)小明家的用水量判斷其在哪個范圍內(nèi),代入相應(yīng)的函數(shù)關(guān)系式求值即可.
解:(1)由題可得,
解得:,
∴每噸水的政府補貼優(yōu)惠價和市場指導(dǎo)價分別是2元、3.5元;
(2)①當時,,
②當時,,
綜上:;
(3)∵,
∴
答:他家應(yīng)交水費69.5元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,下述結(jié)論:①BD平分∠ABC;②AD=BD=BC;③△BDC的周長等于AB+BC;④D是AC中點.其中正確的命題序號是( )
A.①②③ B.①②④ C.②③④ D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠甲、乙兩個部門各有員工400人,為了解這兩個部門員工的生產(chǎn)技能情況,進行了抽樣調(diào)查,過程如下,請補充完整.
收集數(shù)據(jù)
從甲、乙兩個部門各隨機抽取20名員工,進行了生產(chǎn)技能測試,測試成績(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):
成績 人數(shù) 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說明:成績80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結(jié)論:
.估計乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為____________;
.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_____________.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合實踐課上,某小組同學將直角三角形紙片放到橫線紙上(所有橫線都平行,且相鄰兩條平行線的距離為1),使直角三角形紙片的頂點恰巧在橫線上,發(fā)現(xiàn)這樣能求出三角形的邊長.
(1)如圖1,已知等腰直角三角形紙片△ABC,∠ACB=90°,AC=BC,同學們通過構(gòu)造直角三角形的辦法求出三角形三邊的長,則AB=__________;
(2)如圖2,已知直角三角形紙片△DEF,∠DEF=90°,EF=2DE,求出DF的長;
(3)在(2)的條件下,若橫格紙上過點E的橫線與DF相交于點G,直接寫出EG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學在用描點法畫二次函數(shù)y=x2+bx+c圖像時,由于粗心他算錯了一個y值,列出了下面表格:
x | … | -1 | 0 | 1 | 2 | 3 | … |
y=x2+bx+c | … | 5 | 3 | 2 | 3 | 6 | … |
(1)請你幫他指出這個錯誤的y值,并說明理由;
(2)若點M(m,y1),N(m+4,y2)在二次函數(shù)y=x2+bx+c圖像上,且m>-1,試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.
(1)求證:∠BAF=∠CBE;
(2)若AD=5,AB=8,sinD=.求證:AF=BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩隊舉行了一年一度的賽龍舟比賽,兩隊在比賽的路程(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示,請你根據(jù)圖象判斷,下列說法正確的有( )
①甲隊先到達終點;
②甲隊比乙隊多走200米路程;
③乙隊比甲隊少用分鐘;
④比賽中兩隊從出發(fā)到分鐘時間段,乙隊的速度比甲隊的速度快.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,任取一點O,連AO,BO,CO,分別取點D,E,F,使OD=AO,OE=BO,OF=CO,得△DEF,有下列說法:
①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;
③△DEF與△ABC的周長比為1:3;④△DEF與△ABC的面積比為1:6.
則正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com