【題目】如圖所示.
(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度數(shù);
(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大。
【答案】(1)45°;(2)α
【解析】試題分析:(1)先求得∠AOC的度數(shù),然后再依據(jù)角平分線的定義求得∠COM和∠NOC的度數(shù),最后,再依據(jù)∠MON=∠MOC﹣∠CON求解即可;
(2)按照(1)中的方法和思路求解即可.
試題解析:解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°.
∵OM平分∠AOC,ON平分∠BOC,∴∠MOC= ∠AOC=60°,∠CON=∠BOC=15°,∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°.
(2)同理可得,∠MOC=(α+β),∠CON=β.
則∠MON=∠MOC﹣∠CON=(α+β)﹣β=α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點(diǎn)R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
(3)如圖3,若△ARB∽△PEQ,求∠MON大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)O是直線AB上的一點(diǎn), ,OD、OE分別是、 的角平分線.
(1)求的度數(shù);
(2)寫出圖中與互余的角;
(3)圖中有的補(bǔ)角嗎?若有,請(qǐng)把它找出來,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列算式:12-02=1+0=1,,22-12=2+1=3,32-22=3+2=5,42-32=4+3=7 ,52-42=5+4=9,…….
若字母 表示自然數(shù),請(qǐng)把你觀察到的規(guī)律用含有 的式子表示出來________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個(gè)小正方形的邊長是1個(gè)單位長度)
(1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)以點(diǎn)B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點(diǎn)的坐標(biāo)及△A2BC2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的是( )
A.∠A=∠C,∠B=∠D
B.AB∥CD,AB=CD
C.AB=CD,AD∥BC
D.AB∥CD,AD∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經(jīng)過點(diǎn)C.過點(diǎn)C作⊙O的切線交AB的延長線于點(diǎn)P.點(diǎn)D為圓上一點(diǎn),且 ,弦AD的延長線交切線PC于點(diǎn)E,連接BC.
(1)判斷OB和BP的數(shù)量關(guān)系,并說明理由;
(2)若⊙O的半徑為2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三條線段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能構(gòu)成三角形的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com