精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD和四邊形ECGF都是正方形,C、D、E在一條直線上,B、C、G在一條直線上.

(1)寫出表示陰影部分面積的表達式(結果要求化簡);

(2)求陰影面積的面積

【答案】1a23a+18;

214

【解析】

1)陰影部分的面積等于兩個正方形的面積之和減去△ABD△ BGF的面積,然后分別計算即可;

2)把a=4代入(1)中所求的表達式,求值即可.

1)∵SABCD+S□ECGF=a2+62,SABD=×a2,SBGF=×a+6×6=3a+6

S陰影= SABCD+SECGF SABD SBGF=a2+363a+6=a23a+18;

2)當a=4時,S陰影=a23a+18=×423×4+18=14.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】【概念學習】

規(guī)定:求若干個相同的有理數(均不等)的除法運算叫做除方,如2÷2÷2, .類比有理數的乘方,我們把記作,讀作的圈次方, 記作,讀作的圈次方”.一般地,把)記作讀作的圈次方

【初步探究】

1)直接寫出計算結果: =_____, _____

2)關于除方,下列說法錯誤的是______

A.任何非零數的圈2次方都等于1

B.對于任何正整數

C.

D.負數的圈奇數次方結果是負數,負數的圈偶數次方結果是正數

【深入思考】

我們知道,有理數的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數的除方運算如何轉化為乘法運算呢?

3)試一試:仿照上面的算式,將下列運算結果直接寫成冪的形式=_________

4)想一想:將一個非零有理數的圈n次方寫成冪的形式等于_________

5)算一算:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知數軸上的點A和點B之間的距離為28個單位長度,點A在原點左邊,距離原點8個單位長度,點B在原點的右邊.

1)請直接寫出AB兩點所對應的數.

2)數軸上點A以每秒1個單位長度的速度出發(fā)向左運動,同時點B以每秒3個單位長度的速度出發(fā)向左運動,在點C處追上了點A,求C點對應的數.

3)已知,數軸上點M從點A向左出發(fā),速度為每秒1個單位長度,同時點N從點B向左出發(fā),速度為每秒2個單位長度,經t秒后點M、N、OO為原點)其中的一點恰好到另外兩點的距離相等,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AF、CE分別是∠BAD和∠BCD的角平分線,根據現有的圖形,請?zhí)砑右粋條件,使四邊形AECF為菱形,則添加的一個條件可以是__________.(只需寫出一個即可,圖中不能再添加別的”)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,線段AB=8cm,C為線段AB上的一個動點(C不與點A、B重合),D、E分別是線段AC和線段BC的中點.

(1)DE的長;

(2)知識遷移:如圖②,已知∠AOB=,射線OC在∠AOB的內部,OD、OE分別平分∠AOC和∠BOC,求∠DOE的度數(用含的代數式表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,所有小正方形的邊長都為1,AB、C都在格點上.

(1)過點C畫直線AB的平行線(不寫作法,下同);

(2)過點A畫直線BC的垂線,并注明垂足為G;過點A畫直線AB的垂線,交BC于點H

(3)線段   的長度是點A到直線BC的距離,線段AH的長度是點   到直線   的距離.

(4)因為直線外一點到直線上各點連接的所有線中,垂線段最短,所以線段AG、AH的大小關系為AG   AH

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一張正方形紙片,剪成四個大小形狀一樣的小正方形,然后將其中的一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去.

1)填出下表:

剪的次數

1

2

3

4

5

6

正方形個數

2)如果剪了100次,共剪出   個小正方形?

3)如果剪次,共剪出   個小正方形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,直線a 、b被直線c所截,現給出下列四種條件:

①∠2=∠6 ②∠2=∠8 ③∠1+∠4180° ④∠3=∠8,其中能判斷是ab的條件的序號是(

A. ①② B. ①③ C. ①④ D. ③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知長方形ABCD中,AD=10cm,AB=6cm,點M在邊CD上,由C往D運動,速度為1cm/s,運動時間為t秒,將△ADM沿著AM翻折至△ADM,點D對應點為D,AD所在直線與邊BC交于點P.

(1)如圖1,當t=0時,求證:PA=PC;

(2)如圖2,當t為何值時,點D恰好落在邊BC上;

(3)如圖3,當t=3時,求CP的長.

查看答案和解析>>

同步練習冊答案