如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點D在邊AC上,點E,F(xiàn)在邊AB上,點G在邊BC上.

⑴求證:△ADE≌△BGF;
⑵若正方形DEFG的面積為16,求AC的長.
(1)證明見解析;(2)cm.

試題分析:(1)先根據(jù)等腰直角三角形的性質得出∠B=∠A=45°,再根據(jù)四邊形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出結論;
(2)過點C作CG⊥AB于點G,由正方形DEFG的面積為16cm2可求出其邊長,故可得出AB的長,在Rt△ADE中,根據(jù)勾股定理可求出AD的長,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的對應邊成比例即可求出AC的長.
試題解析:(1)證明:∵△ABC是等腰直角三角形,∠C=90°,
∴∠B=∠A=45°,
∵四邊形DEFG是正方形,
∴∠BFG=∠AED=90°,
故可得出∠BGF=∠ADE=45°,GF=ED,
∵在△ADE與△BGF中,

∴△ADE≌△BGF(ASA);
(2)解:過點C作CG⊥AB于點H,

∵正方形DEFG的面積為16cm2,
∴DE=AE=4cm,
∴AB=3DE=12cm,
∵△ABC是等腰直角三角形,CH⊥AB,
∴AH=AB=×12=6cm,
在Rt△ADE中,
∵DE=AE=4cm,
∴AD=cm,
∵CH⊥AB,DE⊥AB,
∴CH∥DE,
∴△ADE∽△ACH,
,即,
解得:AC=cm.
考點: 1.相似三角形的判定與性質;2.全等三角形的判定與性質;3.等腰直角三角形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,交BC于點D,連接OD,過點D作⊙O的切線,交AB延長線于點E,交AC于點F.
(1)求證:OD∥AC;
(2)當AB=10,時,求AF及BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知E、F是平行四邊形ABCD對角線BD的三等分點,且CG=3,則AD等于     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,在△ABC中,BC=6,E、F分別是AB、AC的中點,動點P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q,當CQ=CE時,EP+BP=__________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=10,AD=4,點P是邊AB上一點,若△APD與△BPC相似,則滿足條件的點P有   個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AD為等邊△ABC邊BC上的高,AB=4,AE=1,P為高AD上任意一點,則EP+BP的最小值為(  )。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在四邊形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,點E、F分別為AB、AD的中點,則△AEF與多邊形BCDFE的面積之比為 (  )

A.   B.   C.   D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在比例尺是1∶8 000的南京市城區(qū)地圖上,太平南路的長度約為25 cm,它的實際長度約為(  )
A.320 cmB.320 m
C.2 000 cmD.2 000 m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如果將一個三角形繞著它一個角的頂點旋轉后使這個角的一邊與另一邊重疊,再將旋轉后的三角形進行相似縮放,使重疊的兩條邊互相重合,我們稱這樣的圖形變換為三角形轉似,這個角的頂點稱為轉似中心,所得的三角形稱為原三角形的轉似三角形。如圖,在△ABC中,AB=6,BC=7,AC=5,△是△ABC以點C為轉似中心的其中一個轉似三角形,那么以點C為轉似中心的另一個轉似三角形△(點分別與A、B對應)的邊的長為_____。

查看答案和解析>>

同步練習冊答案