【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點和點,且,滿足.

1______,______.

2)點在直線的右側(cè),且

①若點軸上,則點的坐標(biāo)為______;

②若為直角三角形,求點的坐標(biāo).

【答案】1)-2,4;(2)①;②點的坐標(biāo)為.

【解析】

1)利用非負(fù)數(shù)的的性質(zhì)即可求出ab;
2)①利用等腰直角三角形的性質(zhì)即可得出結(jié)論;
②分兩種情況,利用等腰三角形的性質(zhì),及全等三角形的性質(zhì)求出PC,BC,即可得出結(jié)論

解:(1)由題意,得

所以,

解得;

2)①如圖,由(1)知,b=4


B0,4),
OB=4
P在直線AB的右側(cè),且在x軸上,
∵∠APB=45°
OP=OB=4,
∴點的坐標(biāo)為.

②當(dāng)時,過點軸于點,

,

.

又∵,

.

.

又∵,

.

,

..

故點的坐標(biāo)為.

當(dāng)時,作軸,于點,

, ,

.

又∵

,

又∵ ,

.

,.

∴點的坐標(biāo)為.

故點的坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進甲、乙兩種空調(diào)共50臺.已知購進一臺甲種空調(diào)比購進一臺乙種空調(diào)進價少0.3萬元;用20萬元購進甲種空調(diào)數(shù)量是用40萬元購進乙種空調(diào)數(shù)量的2倍.請解答下列問題:

1)求甲、乙兩種空調(diào)每臺進價各是多少萬元?

2)若商場預(yù)計投入資金不少于10萬元,且購進甲種空調(diào)至少31臺,商場有哪幾種購進方案?

3)在(2)條件下,若甲種空調(diào)每臺售價1100元,乙種空調(diào)每臺售價4300元,甲、乙空調(diào)各有一臺樣機按八折出售,其余全部標(biāo)價售出,商場從銷售這50臺空調(diào)獲利中拿出2520元作為員工福利,其余利潤恰好又可以購進以上空調(diào)共2臺.請直接寫出該商場購進這50臺空調(diào)各幾臺.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

已知:如圖,等腰直角三角形中,平分線,交邊于點.

求證:.

證明:在上截取,連接,

則由已知條件易知:.

,

,∴是等腰直角三角形,

.

(數(shù)學(xué)思考)

現(xiàn)將原題中的平分線,交邊于點”換成“的外角平分線,交邊的延長線于點,如圖,其他條件不變,請你猜想線段之間的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,BAC=50°,BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則CEF的度數(shù)是( 。

A. 60° B. 55° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

為響應(yīng)市政府綠色出行的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bxa≠0)中自變量x和函數(shù)值y的部分對應(yīng)值如下表:

x

﹣2.5

﹣2

﹣1

0

0.5

y

﹣5

0

4

0

﹣5

(1)求二次函數(shù)解析式,并寫出頂點坐標(biāo);

(2)在直角坐標(biāo)系中畫出該拋物線的圖象;

(3)若該拋物線上兩點Ax1,y1)、Bx2,y2)的橫坐標(biāo)滿足x1x2<﹣1,試比較y1y2的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCDCEFG如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,添加以下條件,不能判定的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形紙片ABC,B90°,∠A30°,AC4,點EAC上,AE3.將三角形紙片按圖1方式折疊,使點A的對應(yīng)點落在AB的延長線上,折痕為ED,BC于點F.

1)求∠CFE的度數(shù);

2)如圖2,,繼續(xù)將紙片沿BF折疊,點的對應(yīng)點為,DE于點G .求線段DG的長.

查看答案和解析>>

同步練習(xí)冊答案