已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線l與⊙O相切于點(diǎn)C時(shí),求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線l與⊙O相交于點(diǎn)E,F(xiàn)時(shí),求證:∠DAE=∠BAF.
作業(yè)寶

解:(1)連接OC,
∵直線l與⊙O相切于點(diǎn)C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;

(2)如圖②,連接BF,
∵AB是⊙O的直徑,
∴∠AFB=90°,
∴∠BAF=90°-∠B,
∴∠AEF=∠ADE+∠DAE,
在⊙O中,四邊形ABFE是圓的內(nèi)接四邊形,
∴∠AEF+∠B=180°,
∴∠BAF=∠DAE.
分析:(1)連接OC,易得OC∥AD,根據(jù)平行線的性質(zhì)就可以得到∠DAC=∠ACO,再根據(jù)OA=OC得到∠ACO=∠CAO,就可以證出結(jié)論;
(2)如圖②,連接BF,由AB是⊙O的直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得∠AFB=90°,由三角形外角的性質(zhì),可求得∠AEF的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),繼而證得結(jié)論.
點(diǎn)評(píng):此題考查了切線的性質(zhì)、圓周角定理以及圓的內(nèi)接四邊形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l與坐標(biāo)軸相交于點(diǎn)A(2,0)、B(0,-3).
(1)求直線l的函數(shù)關(guān)系式;
(2)利用函數(shù)圖象寫出當(dāng)函數(shù)值y>0時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB與x軸交于A(6,0)點(diǎn),與y軸交于B(0,10)點(diǎn),點(diǎn)M的坐標(biāo)為(0,4),點(diǎn)P(x,y精英家教網(wǎng))是折線O→A→B上的動(dòng)點(diǎn)(不與O點(diǎn)、B點(diǎn)重合),連接OP,MP,設(shè)△OPM的面積為S.
(1)求S關(guān)于x的函數(shù)表達(dá)式,并求出x的取值范圍;
(2)當(dāng)△OPM是以O(shè)M為底邊的等腰三角形時(shí),求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•哈爾濱模擬)已知直線AB與⊙O交于A、B兩點(diǎn),P是直線AB上一點(diǎn),若⊙O的半徑是5,PB=3,AB=8,則tan∠OPA的值是
3或
3
7
3或
3
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

平面內(nèi),已知直線a與b平行,如果直線a與c垂直,那么直線b與c的位置關(guān)系是
b⊥c
b⊥c
;如果直線a與c平行,那么直線b與c的位置關(guān)系是
b∥c
b∥c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB與CD相交于點(diǎn)O,OE⊥CD,OF平分∠BOE,若∠AOC=∠EOF,
(1)求∠AOC的度數(shù);
(2)寫出∠EOF的余角和補(bǔ)角.

查看答案和解析>>

同步練習(xí)冊(cè)答案