【題目】如圖,矩形中,平分交于點.

1)求證:;

2)若,求的長.

【答案】1)見解析;(2.

【解析】

1)要求證:BF=BC只要證明∠CFB=FCB就可以,從而轉化為證明∠BCE=BDC即可;

2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cmCD=4cm,在直角△BCD中,根據(jù)三角形的面積等于, ,就可以求出CE的長,要求CF的長,可以在直角△CEF中用勾股定理求得,其中EF=BF-BE,BE在直角△BCE中根據(jù)勾股定理就可以求出,由此解決問題.

1)∵四邊形ABCD是矩形,∴∠BCD=90°

∴∠CDB+DBC=90°.

CEBD,∴∠DBC+ECB=90°.

∴∠ECB=CDB.

∵∠CFB=CDB+DCF,∠BCF=ECB+ECF,∠DCF=ECF,

∴∠CFB=BCF

BF=BC

2)∵四邊形ABCD是矩形,∴DC=AB=4cm),BC=AD=3cm.

RtBCD中,由勾股定理得.

又∵BD·CE=BC·DC,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李輝到服裝專賣店去做社會調(diào)查,了解到商店為了激勵營業(yè)員的工作積極性實行了“月總收入=基本工資+計件獎金”的方法,并獲得了如下信息:

營業(yè)員

嘉琪

嘉善

月銷售件數(shù)/

400

300

月總收入/

7800

6600

假設月銷售件數(shù)為x件,月總收入為y元,銷售每件獎勵a元,營業(yè)員月基本工資為b元.

1)求ab的值.

2)若營業(yè)員嘉善某月總收入不低于4200元,那么嘉善當月至少要賣多少件衣服?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AC平分∠DAB,直線DCAB的延長線相交于點PADPC延長線垂直,垂足為點DCE平分∠ACB,交AB于點F,交⊙O于點E

1)求證:PC與⊙O相切;

2)求證:PCPF;

3)若AC8,tanABC,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華同學對圖形旋轉前后的線段之間、角之間的關系進行了拓展探究.

(一)猜測探究

在△ABC中,ABACM是平面內(nèi)任意一點,將線段AM繞點A按順時針方向旋轉與∠BAC相等的角度,得到線段AN,連接NB

1)如圖1,若M是線段BC上的任意一點,請直接寫出∠NAB與∠MAC的數(shù)量關系是_______,NBMC的數(shù)量關系是_______;

2)如圖2,點EAB延長線上點,若M是∠CBE內(nèi)部射線BD上任意一點,連接MC,(1)中結論是否仍然成立?若成立,請給予證明,若不成立,請說明理由。

(二)拓展應用

如圖3,在△A1B1C1中,A1B18,∠A1B1C190°,∠C130°,PB1C1上的任意點,連接A1P,將A1P繞點A1按順時針方向旅轉60°,得到線段A1Q,連接B1Q.求線段B1Q長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是ABC的邊AB上一點,O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.

(1)求證:∠C=90°;

(2)當BC=3,sinA=時,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,函數(shù)y2=x+b交與點AB兩點,其中點A的縱坐標是3,則滿足y2y1x的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明參加班長競選,需進行演講答辯與民主測評,民主測評時一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評委對小明“演講答辯”的評分統(tǒng)計圖及全班50位同學民主測評票數(shù)統(tǒng)計圖.

(1)求評委給小明演講答辯分數(shù)的眾數(shù),以及民主測評為“良好”票數(shù)的扇形圓心角度數(shù);

(2)求小明的綜合得分是多少?

(3)在競選中,小亮的民主測評得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,邊的中線,,連結,點在射線上(與,不重合)

1)如果

①如圖1,   

②如圖2,點在線段上,連結,將線段繞點逆時針旋轉,得到線段,連結,補全圖2猜想、之間的數(shù)量關系,并證明你的結論;

2)如圖3,若點在線段 的延長線上,且span>,連結,將線段繞點逆時針旋轉得到線段,連結,請直接寫出、、三者的數(shù)量關系(不需證明)

查看答案和解析>>

同步練習冊答案