精英家教網 > 初中數學 > 題目詳情

【題目】已知:在平行四邊形ABCD中,點E在直線AD上,AE= AD,連接CE交BD于點F,則EF:FC的值是

【答案】
【解析】解:∵AE= AD,
∴分兩種情況:
①當點E在線段AD上時,如圖1所示
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴△EFD∽△CFB,
∴EF:FC=DE:BC,
∵AE= AD,
∴DE=2AE= AD= BC,
∴DE:BC=2:3,
∴EF:FC=2:3;
②當點E在線段DA的延長線上時,如圖2所示:
同①得:△EFD∽△CFB,
∴EF:FC=DE:BC,
∵AE= AD,
∴DE=4AE= AD= BC,
∴DE:BC=4:3,
∴EF:FC=4:3;
綜上所述:EF:FC的值是
故答案為:


分兩種情況:①當點E在線段AD上時,由四邊形ABCD是平行四邊形,可證得△EFD∽△CFB,求出DE:BC=2:3,即可求得EF:FC的值;
②當當點E在射線DA上時,同①得:△EFD∽△CFB,求出DE:BC=4:3,即可求得EF:FC的值.此題考查了相似三角形的判定與性質與平行四邊形的性質.此題難度不大,證明三角形相似是解決問題的關鍵;注意分情況討論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】6分)某商場統(tǒng)計了今年1~5月A,B兩種品牌冰箱的銷售情況,并將獲得的數據繪制成折線統(tǒng)計圖

(1)分別求該商場這段時間內A,B兩種品牌冰箱月銷售量的中位數和方差;

(2)根據計算結果,比較該商場1~5月這兩種品牌冰箱月銷售量的穩(wěn)定性.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列圖形中, 不是同位角的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】以直線AB上一點O為端點作射線OC,將一塊直角三角板的直角頂點放在O(:∠DOE=90°).

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB,∠BOC=60°,∠COE的度數;

(2)如圖②,將三板DOEO逆時針轉動到某個位置時,若恰好滿足5∠COD=∠AOE,∠BOC=60°,∠BOD的度數;

(3)如圖③,將直角三角板DOE繞點O逆時針方向轉動到某個位置,OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,過點A(﹣ ,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根

(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標;
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,FH⊥BE,交BD于點G,交BC于點H;下列結論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結論有___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若點O是等腰△ABC的外心,且∠BOC=60°,底邊BC=2,則△ABC的面積為(  )
A.2+
B.
C.2+ 或2﹣
D.4+2 或2﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:小明在學習二次根式后,發(fā)現一些含根號的式子可以寫成另一個式子的平方,如3+=1+2.善于思考的小明進行了以下探索:

a+b=m+n2(其中a、b、mn均為整數),則有a+b=m2+2n2+2mn

a=m2+2n2b=2mn.這樣小明就找到了一種把類似a+b的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

1ab、mn均為正整數時,若a+b=m+n)2,用含m、n的式子分別表示ab,得:a= ,b= ;

2利用探索的結論,找一組正整數a、bm、n a、b都不超過20

填空:   +  =   +   2;

3)若a+6=(m+n)2,且a、mn均為正整數,求a的值?

查看答案和解析>>

同步練習冊答案