【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
【答案】(1)證明見解析;(2)若∠ADB是直角,則四邊形BEDF是菱形,理由見解析.
【解析】試題(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點,可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先證明BE與DF平行且相等,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,∠A=∠C,
∵E、F分別為邊AB、CD的中點,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(SAS);
(2)若∠ADB是直角,則四邊形BEDF是菱形,理由如下:
解:由(1)可得BE=DF,
又∵AB∥CD,
∴BE∥DF,BE=DF,
∴四邊形BEDF是平行四邊形,
連接EF,在ABCD中,E、F分別為邊AB、CD的中點,
∴DF∥AE,DF=AE,
∴四邊形AEFD是平行四邊形,
∴EF∥AD,
∵∠ADB是直角,
∴AD⊥BD,
∴EF⊥BD,
又∵四邊形BFDE是平行四邊形,
∴四邊形BFDE是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格紙中,建立了平面直角坐標(biāo)系,點,點,,.
以點為對稱中心,畫出,使與關(guān)于點對稱,并寫出下列點的坐標(biāo):________,________;
多邊形的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,以AB為直角邊作等腰直角三角形ABD,與BC邊交于點E,
(1)若∠ACE=18°,則∠ECD=
(2)探索:∠ACE與∠ACD有怎樣的數(shù)量關(guān)系?猜想并證明.
(3)如圖2,作△ABC的高AF并延長,交BD于點G,交CD延長線于點H,求證:CH2+DH2=2AD2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象經(jīng)過點,對稱軸為直線,一次函數(shù)的圖象經(jīng)過點,交軸于點,交拋物線于另一點,點、位于點的同側(cè).
求拋物線的解析式;
若,求一次函數(shù)的解析式;
在的條件下,當(dāng)時,拋物線的對稱軸上是否存在點,使得同時與軸和直線都相切,如果存在,請求出點的坐標(biāo),如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個圖形成中心對稱,則下列說法:
①對應(yīng)點的連線一定經(jīng)過對稱中心;
②這兩個圖形的形狀和大小完全相同;
③這兩個圖形的對應(yīng)線段一定互相平行;
④將一個圖形圍繞對稱中心旋轉(zhuǎn)后必與另一個圖形重合.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點D在邊上,將繞點A逆時針轉(zhuǎn),使與重合,點D的對應(yīng)點是E.若點B、D、E在同一條直線上,則的度數(shù)為_____(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷一種商品,已知其每件進(jìn)價為40元,F(xiàn)在每件售價為70元,每星期可賣出500件。該商場通過市場調(diào)查發(fā)現(xiàn):若每件漲價1元,則每星期少賣出10件;若每件降價1元,則每星期多賣出m(m為正整數(shù))件。設(shè)調(diào)查價格后每星期的銷售利潤為W元。
(1)設(shè)該商品每件漲價x(x為正整數(shù))元,
①若x=5,則每星期可賣出____件,每星期的銷售利潤為_____元;
②當(dāng)x為何值時,W最大,W的最大值是多少。
(2)設(shè)該商品每件降價y(y為正整數(shù))元,
①寫出W與Y的函數(shù)關(guān)系式,并通過計算判斷:當(dāng)m=10時每星期銷售利潤能否達(dá)到(1)中W的最大值;
②若使y=10時,每星期的銷售利潤W最大,直接寫出W的最大值為_____。
(3)若每件降價5元時的每星期銷售利潤,不低于每件漲價15元時的每星期銷售利潤,求m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個圓錐的高為cm,側(cè)面展開圖是半圓.
求:(1)圓錐的母線長與底面半徑之比;
(2)求∠BAC的度數(shù);
(3)圓錐的側(cè)面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com