【題目】四邊形ABCD是正方形(提示:正方形四邊相等,四個(gè)角都是90°)
如圖1,點(diǎn)G是BC邊上任意一點(diǎn)(不與點(diǎn)B、C重合),連接AG,作BF⊥AG于點(diǎn)F,
DE⊥AG于點(diǎn)E.求證:△ABF≌△DAE;
(2) ①如圖2,若點(diǎn)G是CD邊上任意一點(diǎn)(不與點(diǎn)C、D重合),連接AG,作BF⊥AG于點(diǎn)F,
DE⊥AG于點(diǎn)E,線段EF與AF、BF的等量關(guān)系是______ ___;
②如圖3,若點(diǎn)G是CD延長(zhǎng)線上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,
線段EF與AF、BF的等量關(guān)系是______ ;
(3)若點(diǎn)G是BC延長(zhǎng)線上任意一點(diǎn),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,請(qǐng)畫(huà)圖并
探究線段EF與AF、BF的等量關(guān)系.
【答案】(1)詳見(jiàn)解析;(2)① EF=BF-AF;②EF=AF+BF;(3)詳見(jiàn)解析.
【解析】試題分析:(1) 利用正方形邊相等和直角三角形角互余,證明△ABF和△DAE全等.
(2)畫(huà)圖,方法同(1)
(3)利用正方形的邊的性質(zhì),證明△ABF和△DAE全等,
試題解析:
證明:(1)∵BF⊥AG,DE⊥AG
∴∠AFB=∠DEA=90°,
∵∠BAD=90°,
∴∠BAF=∠ADE(同角的余角相等),
∵四邊形ABCD是正方形,
∴AB=AD,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(AAS).
(2)①故答案為: EF=BF-AF,
② 故答案為:EF=AF+BF,
(3)如圖4,
∵BF⊥AG,DE⊥AG,
∴∠AFB=∠DEA=90°,
∵∠BAD=90°,
∴∠BAF=∠ADE(同角的余角相等)
∵四邊形ABCD是正方形,
∴AB=AD,
在△ABF和△DAE中
,
∴△ABF≌△DAE(AAS),
∴AE=BF,
∴EF=AE-AF=BF-AF,
即EF=BF-AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】唐代大詩(shī)人李白喜好飲酒作詩(shī),民間有“李白斗酒詩(shī)百篇”之說(shuō).《算法統(tǒng)宗》中記載了一個(gè)“李白沽酒”的故事.詩(shī)云: 今攜一壺酒,游春郊外走.逢朋加一倍,入店飲半斗.相逢三處店,飲盡壺中酒.試問(wèn)能算士:如何知原有.
注:古代一斗是10升.
大意是:李白在郊外春游時(shí),做出這樣一條約定:遇見(jiàn)朋友,先到酒店里將壺里的酒增加一倍,再喝掉其中的5升酒.按照這樣的約定,在第3個(gè)店里遇到朋友正好喝光了壺中的酒.
(1)列方程求壺中原有多少升酒;
(2)設(shè)壺中原有a0升酒,在第n個(gè)店飲酒后壺中余an升酒,如第一次飲后所余酒為a1=2a0﹣5(升),第二次飲后所余酒為a2=2a1﹣5=22a0﹣(22﹣1)×5(升),… 用含an﹣1的式子表示an= , 再用含a0和n的式子表示an=;
(3)按照這個(gè)約定,如果在第4個(gè)店喝光了壺中酒,請(qǐng)借助①中的結(jié)論求壺中原有多少升酒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用四舍五入法把3.1415926精確到千分位是_______;近似數(shù)3.0×106精確到______位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直角三角形的三條邊長(zhǎng)同時(shí)擴(kuò)大同一倍數(shù),得到的三角形是( 。
A.等腰三角形
B.銳角三角形
C.直角三角形
D.鈍角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線AB、CD相交于點(diǎn)O,OM⊥AB.
(1)若∠1=∠2,判斷ON與CD的位置關(guān)系,并說(shuō)明理由;
(2)若∠1= ∠BOC,求∠MOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC∽△DEF , 且相似比為4:3,若△ABC中BC邊上的中線AM=8,則△DEF中EF邊上的中線DN=。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,直線AB、CD相交于點(diǎn)O,∠COE=90°.
(1)若∠AOC=36°,求∠BOE的度數(shù);
(2)若∠BOD:∠BOC=1:5,求∠AOE的度數(shù);
(3)在(2)的條件下,過(guò)點(diǎn)O作OF⊥AB,請(qǐng)直接寫(xiě)出∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某一時(shí)刻,身髙1.6m的小明在陽(yáng)光下的影長(zhǎng)是0.4m,同一時(shí)刻同一地點(diǎn)測(cè)得某旗桿的影長(zhǎng)是5m,則該旗桿的高度是( 。
A.1.25m
B.10m
C.20m
D.8m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( 。┚洌
①兩條射線組成的圖形叫做角;
②同角的補(bǔ)角相等;
③若AC=BC,則C為線段AB的中點(diǎn);
④線段AB就是點(diǎn)A與點(diǎn)B之間的距離;
⑤平面上有三點(diǎn)A、B、C,過(guò)其中兩點(diǎn)的直線有三條或一條.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com